library(MASS)#Question 1, Monte Carlo Bivariate T-Copula
set.seed(1)# Set seed for number sequence
dof<-10 #Degrees of freedom for the t-copula
Ndim<-3#the number of risks, rsik1,rsik2 and rsik3
rho<-0.4#T-copula correlation parameter
CoRMatrix<-matrix(c(1,rho,rho,rho,rho,rho,rho,rho,1),Ndim,Ndim,Ndim)# the correlation matrix formed from the 3 risks and 10 degrees of freedom of the t-copula
sigma<-c(log(c(1.4,1.7,2.0))) #matrix for the standard devistions. We use logs since the distribution is a log Normal
Nsim<-10000
Z<-mvrnorm(Nsim,rep(0,Ndim), CoRMatrix)# Estimates Z
EZ<-mean(Z)#Ouputs Question 1 part 1, the value of E[ Z]
EZ
var(Z)#Outputs Question 1a, part ii, VaR0:99[Z]
Z #Outputs Question 1a part iii, ES0:99[Z].
n=length(Z)
m=0 #both n and m will be used in calculating the 0.99 confidence interval
con.level<-0.99 # this is the level of confidence
Zed<-sqrt(0.995) # this the z value for calculating confidence interval
T<-Zed/sqrt(n)
se<-sd(T) # output the standard error
CI<-0.99*se #confidence interval
LowerLimit<-m-CI
UpperLimit<-m+CI
#########
####Question 1 B
cat(“MLE estimate of E[Z1]=”,mean(Z[,1]),”n”)
cat(“MLE estimate of E[Z2]=”,mean(Z[,2]),”n”)
cat(“MLE estimate of E[Z3]=”,mean(Z[,3]),”n”)
cat(“MLE estimate of standard deviation of Z1=”,sd(Z[,1]),”n”)
cat(“MLE estimate of standard deviation of Z2=”,sd(Z[,2]),”n”)
cat(“MLE estimate of standard deviation of Z3=”,sd(Z[,3]),”n”)
#########
####Question 1 C
##Kendall’s Correlation for measuring the strength of association between the variables. Correlation is between 2 variables hence we calculate for each pair
cat(“Estimate of kendall’s correlation between Z1 and Z2=”,cor(Z[,1],Z[,2],method=”kendall”), “n”)
cat(“Estimate of kendall’s correlation between Z1 and Z3=”,cor(Z[,1],Z[,3],method=”kendall”), “n”)
cat(“Estimate of kendall’s correlation between Z2 and Z3=”,cor(Z[,2],Z[,3]
,method=”kendall”), “n”)
####Spearsman’s Correlation also measures the strength of association between two variables hence we calculate for each pair
cat(“Estimate of Spearma’s correlation between Z1 and Z2=”,cor(Z[,1],Z[,2],method=”spearman”), “n”)
cat(“Estimate of Spearman’s correlation between Z1 and Z3=”,cor(Z[,1],Z[,3],method=”spearman”), “n”)
cat(“Estimate of Spearman’s correlation=”,cor(Z[,2],Z[,3],method=”spearman”), “n”)
####Question 1 d
##
U.tcopula<-pt(Z,dof)#gennerates a sample (U1, U2) from the t- copula
U.Gaussiancopula<-pnorm(Z,0,1) #generates sample (U1,U2) from Gaussian Copula
> library(MASS)#Question 1, Monte Carlo Bivariate T-Copula
> set.seed(1)# Set seed for number sequence
> dof<-10 #Degrees of freedom for the t-copula
> Ndim<-3#the number of risks, rsik1,rsik2 and rsik3
> rho<-0.4#T-copula correlation parameter
> CoRMatrix<-matrix(c(1,rho,rho,rho,rho,rho,rho,rho,1),Ndim,Ndim,Ndim)# the correlation matrix formed from the 3 risks and 10 degrees of freedom of the t-copula
> sigma<-c(log(c(1.4,1.7,2.0))) #matrix for the standard devistions. We use logs since the distribution is a log Normal
> Nsim<-10000
> Z<-mvrnorm(Nsim,rep(0,Ndim), CoRMatrix)# Estimates Z
> EZ<-mean(Z)#Ouputs Question 1 part 1, the value of E[ Z]
> EZ
[1] 0.004449141
> var(Z)#Outputs Question 1a, part ii, VaR0:99[Z]
[,1] [,2] [,3]
[1,] 1.0162244 0.4117166 0.4229360
[2,] 0.4117166 0.4085383 0.4085549
[3,] 0.4229360 0.4085549 1.0076161
> Z #Outputs Question 1a part iii, ES0:99[Z].
[,1] [,2] [,3]
[1,] 0.9861174186 2.494692e-01 0.1050162967
[2,] 0.4534764159 -1.820795e-01 -0.7038894508
[3,] 1.1890447540 6.647049e-01 0.0548255003
[4,] -0.8877186086 -1.716365e-01 -2.1864349065
[5,] 0.1157733377 -5.348002e-01 -0.4324306808
[6,] 0.9365952471 5.321820e-01 0.3614989325
[7,] -0.3945724223 2.317379e-01 -0.7258711271
[8,] -0.7907853384 -6.413838e-01 -0.2737701533
[9,] -0.1167143098 -1.009505e+00 -0.3888052931
[10,] -0.3556636452 -9.216153e-02 1.0238501385
[11,] -1.3486615794 -1.104422e+00 -0.9642469235
[12,] -0.7347963565 -3.986172e-01 0.2109217273
[13,] 0.7460218493 4.272179e-01 0.2214007953
[14,] 2.4129771118 1.405025e+00 1.1110633579
[15,] -0.8649885710 -3.462986e-01 -1.1591882928
[16,] 0.0512678656 1.176738e-01 -0.0366098979
[17,] 0.1155564246 -1.000934e-01 -0.0194415051
[18,] -0.5434974102 -1.078669e+00 -0.6524282596
[19,] -0.1251018787 -7.439065e-01 -1.0395290469
[20,] -1.6224439481 3.858225e-02 0.4126515771
[21,] -0.4504477838 -6.071954e-01 -0.9964143642
[22,] 0.1343519455 -6.875284e-01 -1.2569231706
[23,] 0.5175397849 -2.470938e-01 -0.5088306279
[24,] 1.6463028972 1.459214e-01 2.2306563096
[25,] 0.2845703586 -5.490302e-02 -1.4865048874
[26,] 0.2612151331 -9.898811e-02 -0.0861030137
[27,] 0.3678974156 5.481286e-02 -0.0919306520
[28,] 1.1948009994 1.166460e+00 0.9966833700
[29,] -0.0703004581 3.395729e-01 0.8080397170
[30,] 0.1273972715 -4.125270e-01 -0.6984784141
[31,] -1.2507842970 -6.346667e-01 -1.0560418715
[32,] -0.1660870190 4.848480e-01 0.0621411372
[33,] -0.6974023556 -4.057219e-01 0.1823903942
[34,] 0.8750889413 1.639643e-01 -0.8722352811
[35,] 0.2589037308 7.498773e-01 2.0111598338
[36,] 0.0538421460 2.722704e-01 0.6007657221
[37,] 0.1503261532 1.309845e-01 0.5530272183
[38,] 0.3717352630 -2.751404e-01 -0.0779779973
[39,] -1.4354164306 -5.337674e-01 -0.4195549441
[40,] -1.3397826211 3.286976e-01 -0.3927527055
[41,] -0.0516126742 -5.640009e-01 0.7394655201
[42,] 0.0435693178 1.903135e-01 0.3407258431
[43,] -0.7018876832 -5.195360e-01 -0.3577994496
[44,] -0.6498897622 -1.002010e+00 0.1777450374
[45,] 0.6926466879 3.081159e-01 0.4854326836
[46,] 0.3073162204 6.024017e-01 0.7205648776
[47,] 0.0548373538 -6.118715e-01 -0.3923594317
[48,] -0.4044836076 -6.796340e-01 -0.6959729086
[49,] 0.1101910883 -1.422543e-01 0.2046898333
[50,] -0.7536996562 -5.253960e-02 -0.9711594205
[51,] -0.5910085212 -3.562418e-01 0.0236322922
[52,] 0.1348510300 7.244603e-01 0.6247039200
[53,] -0.0385736308 -4.871161e-01 -0.3316532662
[54,] 0.9501446205 1.093916e+00 0.6063019015
[55,] -0.8059296064 -9.079927e-01 -1.4750247706
[56,] -1.7455370914 -9.231347e-01 -1.6181164811
[57,] 0.7849993186 6.854961e-02 -0.0958645450
[58,] 0.9027511188 7.811673e-01 0.6829767091
[59,] -0.6398686207 -3.585422e-01 -0.2685160389
[60,] -0.2594971036 6.557416e-01 0.1110058395
[61,] -1.6438009007 -1.142315e+00 -2.4207228027
[62,] -0.0579835200 -5.939347e-01 0.5149001853
[63,] -0.3274897390 -5.240733e-01 -0.7148887373
[64,] 0.3710579969 8.525273e-02 -0.4812845812
[65,] 0.3260007144 -6.607009e-02 1.1994026408
[66,] 0.3389612339 -9.852651e-02 -0.6529112138
[67,] 2.0351046949 9.170053e-01 0.9823430783
[68,] -0.9901267800 -1.039332e+00 -1.2720240719
[69,] -0.2667324020 -3.489143e-01 0.1833163012
[70,] -1.6282318005 -1.014161e+00 -2.0609766538
[71,] -1.0181445230 -1.536798e-01 0.1671755564
[72,] 0.7348652941 -1.730445e-01 0.7922224174
[73,] -1.3504497784 1.685272e-01 0.0242465936
[74,] 0.7676404536 4.778956e-01 0.7918191815
[75,] 0.3158141502 1.022237e+00 1.5343203205
[76,] -0.1963131609 3.190889e-01 -0.5887069911
[77,] -0.6080821051 -2.636346e-02 1.5095271822
[78,] 0.1677794343 -3.363765e-01 0.0444407971
[79,] -0.6037537798 2.317131e-01 0.3076896657
[80,] 0.0540002283 -1.065663e-02 1.1292491779
[81,] 0.0702482369 -2.292012e-01 1.2107013349
[82,] 0.1179220183 1.491830e-01 0.0567443300
[83,] -1.1347301895 -4.298866e-01 -0.9422417541
[84,] 1.5349640029 1.519146e+00 0.5370943065
[85,] 0.4115783509 -5.169401e-01 -1.2673377544
[86,] -1.0087396264 3.287866e-01 0.1347113522
[87,] -1.5915513338 -5.122122e-01 -0.2034715044
[88,] 0.6574667263 1.710231e-01 -0.1594531568
[89,] -0.1637689015 -2.757378e-01 -0.3988743621
[90,] 0.3550569878 5.258569e-01 -1.2232951007
[91,] -0.1616928936 4.245904e-01 0.9736946608
[92,] -1.0617025994 -7.708415e-01 -0.8573557463
[93,] -0.9422019773 -6.485094e-01 -0.9601157844
[94,] 0.0135205780 -3.061104e-01 -1.2157440386
[95,] -1.9423445148 -9.673069e-01 -0.6077444258
[96,] -0.3553743506 -2.735336e-01 -0.5847825905
[97,] 0.9252331320 5.593320e-01 1.2658011561
[98,] 0.5468904170 2.597236e-01 0.4315629980
[99,] 0.4162821966 6.438214e-01 1.6171623705
[100,] 0.6382715435 -9.274246e-02 0.3655728643
[101,] 0.6970056220 6.222609e-01 0.1443412042
[102,] -0.6532657708 -3.076301e-01 0.7653202144
[103,] 0.5816515240 7.645928e-01 0.7488001787
[104,] 0.1573606968 -4.530070e-01 -0.1839519291
[105,] 1.0440545113 6.126438e-01 -0.1282912995
[106,] -1.6336580435 -1.386374e+00 -1.0094093821
[107,] -0.2734951709 -5.445205e-01 -0.8096670022
[108,] -0.9657569833 -2.502771e-01 -0.6910581170
[109,] -0.2918811600 1.619258e-01 -0.5780255139
[110,] -1.6436837879 -5.586258e-01 -1.3571895063
[111,] -0.1836800488 1.072637e-01 1.3839884187
[112,] 0.1534576614 2.830931e-01 0.5873468600
[113,] -0.8837347819 -8.946057e-01 -1.4042735538
[114,] -0.4889630892 4.974690e-01 1.4703859079
[115,] 0.0906517754 4.526356e-01 0.0346636446
[116,] 0.8041196477 -2.244867e-02 -0.0059165551
[117,] -0.8439490982 7.631856e-02 1.4338814168
[118,] 0.0236645648 1.522435e-01 0.4362889331
[119,] 0.9874183459 -7.106935e-01 -1.5205898294
[120,] -0.4791181512 2.228657e-02 0.8187945729
[121,] 0.1301040560 6.508803e-01 0.4646824643
[122,] -1.5568034454 -4.278497e-01 -0.8506471186
[123,] -0.3810199136 -1.326226e-01 0.8937790039
[124,] -0.3131398857 -6.275225e-02 0.7114673682
[125,] 0.1776352206 -4.120474e-01 0.2849700140
[126,] -1.2027420096 2.223164e-01 -0.3611823481
[127,] -0.5117572675 -6.859732e-02 0.7022913705
[128,] 0.3041619664 -1.741341e-01 -0.1180554049
[129,] 0.3552607041 3.267392e-01 0.7967877670
[130,] 0.3366141641 4.358414e-01 0.0326732865
[131,] -0.2838767187 -2.554047e-01 0.3266296487
[132,] 0.4457261398 7.830734e-01 0.2303030562
[133,] -0.3643382628 -3.799964e-01 -0.4540909693
[134,] 0.8697090896 8.865614e-01 1.5952731751
[135,] 0.1111720845 -6.792939e-01 -0.2899214623
[136,] 0.9453523696 8.211048e-01 1.5973880637
[137,] 0.8654920334 -3.716333e-01 -0.0279590242
[138,] 0.9416535662 2.577295e-01 -0.0517026728
[139,] 1.4460321200 -4.902532e-02 -0.1134510439
[140,] -0.3014256879 5.218493e-01 0.0823123828
[141,] 1.5737770602 7.838106e-01 1.7468985481
[142,] 0.0477563407 -2.712533e-01 -2.2228497168
[143,] 0.9185469841 9.185291e-01 1.8185709873
[144,] 0.9083593880 -3.799721e-01 0.2588848720
[145,] 1.4331750574 6.806470e-01 0.3598863904
[146,] 0.4460506418 6.725712e-01 0.6235579243
[147,] -2.0413370987 -1.172374e+00 -1.3765015676
[148,] 0.5221066686 -5.580021e-01 -0.2011183776
[149,] 1.1721344197 1.208608e+00 0.6243873998
[150,] 1.6151429217 9.217082e-01 1.0713216137
[151,] 0.4906882614 3.063489e-01 -1.5843726844
[152,] 0.5820796924 -8.920919e-01 0.0236302066
[153,] 0.8616151415 -3.712208e-01 0.0097644553
[154,] 0.4337669244 2.829420e-01 1.2405173324
[155,] 0.5861011686 4.851031e-01 2.0730622667
[156,] 1.0609669016 1.338238e-02 1.0761711674
[157,] 0.0748761367 -7.797860e-01 -1.5734663293
[158,] -0.0970635150 7.148284e-01 0.8811985084
[159,] 1.2475271408 1.161148e+00 0.7750707078
[160,] -1.6478353060 -1.407518e+00 -1.1853124296
[161,] -0.0590472697 -5.615106e-01 -0.4313492327
[162,] 0.5052149736 1.797925e-02 -0.0404285127
[163,] -0.2439653639 -7.779968e-01 -1.3724174462
[164,] -1.1208966167 -5.471530e-01 -0.2992734106
[165,] 0.9038561244 1.146001e-01 0.2588611256
[166,] -2.5393360161 -1.270377e+00 -1.0533800657
[167,] -0.0641192587 -1.027518e-01 0.6385547609
[168,] 0.6350964749 5.564924e-01 1.8529041171
[169,] 0.6610889498 -1.005540e-01 -0.3088240509
[170,] 0.3203489775 1.305792e-01 -0.8177542162
[171,] -2.3790622169 -1.455767e+00 -1.2987805533
[172,] 0.6057547430 -1.031096e+00 -0.1596141071
[173,] 0.1249332408 -3.686077e-01 -0.8019542839
[174,] 0.4073515769 -3.149810e-01 -0.0525967279
[175,] 0.1317920121 1.603722e-01 0.4325141154
[176,] -0.7318280889 -6.671000e-01 1.2263764852
[177,] -1.1934197227 -5.877712e-01 -0.0037250761
[178,] -1.1257262284 -1.155837e+00 -2.2788637150
[179,] -1.0427174995 -4.387680e-01 -0.7278647513
[180,] -1.6456703197 -5.191377e-01 -0.4339197691
[181,] 1.3875042454 6.230914e-01 0.6725469845
[182,] -1.1714167155 -8.236619e-01 -0.2670086823
[183,] -0.3574558163 -8.557515e-01 0.4640769929
[184,] 0.9611122251 1.182384e+00 1.2132314717
[185,] -1.3980619300 -1.633977e-01 0.4624609561
[186,] -0.0810637248 2.085422e-01 0.2649395933
[187,] -0.2309545987 -6.398164e-01 -2.2839398733
[188,] 0.2604371207 5.392775e-01 0.9245997202
[189,] -0.0424878569 -3.043987e-02 0.9204286032
[190,] 1.3636251714 4.993892e-01 0.1661919693
[191,] 0.3031921623 1.124064e-02 0.0430735382
[192,] -0.1535718517 6.815553e-02 -0.6921348085
[193,] 0.2711686302 3.809559e-01 0.9462746529
[194,] -0.5765444298 -3.671866e-01 -0.8464936378
[195,] 0.5882168805 3.492836e-01 1.5999961662
[196,] 1.3397956685 3.199422e-01 0.5476267936
[197,] -1.5155758351 -8.469226e-01 -0.8205405087
[198,] -0.0248644868 9.704456e-01 1.4334849652
[199,] -0.9595390658 1.209642e-01 0.0602869071
[200,] -0.5692293681 2.146602e-01 1.1928730758
[201,] -0.3233465634 1.750968e-01 -0.6052784497
[202,] -0.9616067025 -1.194417e+00 -1.6473411530
[203,] -1.1257317991 -9.106101e-01 -1.4600099860
[204,] 0.2058486421 6.779101e-01 0.0223759722
[205,] 1.3050316034 1.347895e+00 2.3961890391
[206,] -2.7001155260 -1.385545e+00 -1.4010252585
[207,] 0.0100674325 -5.910188e-01 -0.9645240001
[208,] -0.3779038264 -5.782807e-01 -0.3337465414
[209,] 0.4085318231 -1.375243e-01 -0.2941255124
[210,] -0.6110806234 1.779958e-01 -0.5203638337
[211,] -0.9621657212 -4.992378e-01 1.6084398633
[212,] -0.1040365188 -5.104926e-01 -0.4100897084
[213,] 1.8054686031 3.495480e-01 -1.2295529705
[214,] 0.7857727988 1.560126e+00 0.9541176718
[215,] -0.6289614544 -6.273401e-01 -0.9424790685
[216,] -1.5178551618 -5.294903e-01 -1.1774410808
[217,] 0.5463511680 -5.174450e-02 0.1027608026
[218,] 1.1515434305 5.874793e-01 0.9750453810
[219,] -0.7787040928 -7.600173e-01 -0.0184820829
[220,] -0.6049231415 -1.448061e-01 0.7864532107
[221,] 0.8067218789 1.579072e+00 1.6455197215
[222,] 0.4985619621 8.819590e-02 -0.5590375646
[223,] 2.0870378518 2.113014e-01 -0.9638976086
[224,] 0.3929218934 -2.724252e-02 0.3048857491
[225,] 0.4426600321 8.623906e-02 1.8104381139
[226,] -1.3617344451 -1.084839e+00 -1.5451010132
[227,] 1.0454605576 -1.941861e-01 -0.2608632191
[228,] 2.0010001109 5.669088e-01 0.8416040324
[229,] -0.3056821257 3.143201e-01 -0.2882059142
[230,] -0.0934537539 -1.535297e-02 -0.4219563610
[231,] 1.4669894721 1.136163e+00 -0.2239167078
[232,] 1.8832948759 1.918272e+00 2.6590568402
[233,] 1.3188883720 1.361693e-01 -0.1275364410
[234,] -0.6983739744 -3.839562e-01 -0.1953828720
[235,] -0.2019604364 4.034308e-01 0.0639746006
[236,] -0.4649983479 -1.263989e-01 0.7414992677
[237,] -0.5340753136 -1.657660e-02 -0.5745394766
[238,] 1.4491548864 2.145187e-01 0.7818117758
[239,] -0.8870622884 -3.067359e-02 -1.2821281742
[240,] -0.4572093251 3.816814e-01 0.2245678574
[241,] -0.1032690043 -4.632574e-01 -1.0129426157
[242,] -1.2067990144 -1.635450e-01 -0.7526276689
[243,] -0.3767003202 2.816157e-01 -0.2487986838
[244,] 1.7769863513 2.819761e-01 -0.2031732477
[245,] -0.4667850677 -5.001909e-01 -1.5351922385
[246,] 1.7761231128 8.013933e-01 1.7045789634
[247,] 0.2406841566 3.539307e-01 0.6208916584
[248,] 0.8171994438 9.103933e-02 -0.3650132035
[249,] -0.0413265240 8.539191e-02 0.3184061785
[250,] -0.4734319865 -7.724775e-01 -1.0705976088
[251,] -0.4815846018 2.366651e-01 0.0588741081
[252,] -1.2004035301 -4.847159e-02 0.4187528031
[253,] 0.3987438814 -2.842766e-01 -0.0785252281
[254,] 0.1943026979 5.876537e-01 -0.0746651570
[255,] 0.1194229038 -3.446876e-01 -1.2877497100
[256,] -0.2837439721 -7.396306e-01 -1.5322014625
[257,] 1.3873701648 9.396443e-01 2.8092978882
[258,] -0.1645696078 -1.426377e-02 -0.9693048906
[259,] -0.4257726342 -2.869155e-01 -0.1391358877
[260,] 0.6465667672 -2.578817e-01 0.3664923298
[261,] -0.5586616897 -6.668523e-01 -0.9141020137
[262,] -0.2431601998 -1.543633e-02 1.0297673822
[263,] 0.1897051640 -2.387356e-01 0.5298931632
[264,] -1.1844305472 -9.225178e-01 0.0614385149
[265,] -1.8333642394 -7.059100e-01 -1.1483596150
[266,] 0.0772874655 -1.344114e-01 -0.5305310869
[267,] 1.1841699389 1.560266e-01 -0.4411141458
[268,] 1.2844639463 4.070245e-01 0.8290858785
[269,] 0.1709612961 8.596084e-01 -0.0583120316
[270,] 0.3233607747 7.361074e-01 1.0829377783
[271,] -0.6792608077 3.994416e-01 0.9413627850
[272,] 0.0059636494 1.778813e-01 -0.9063842067
[273,] 0.2672142786 -1.458160e-02 1.4420588125
[274,] -3.1702995910 -1.164722e+00 -1.3739528598
[275,] 0.8372221760 -6.365684e-02 -1.1079826542
[276,] -1.1672134742 -3.394895e-01 -0.8718334751
[277,] 2.3070913251 1.023556e+00 1.6086420160
[278,] -0.5523556159 -2.679038e-01 -0.7556190462
[279,] 1.3154480835 2.137050e-01 1.1750410740
[280,] -0.1672680356 -4.786325e-01 -1.3631966277
[281,] -0.1320014291 3.567547e-01 -0.8899290578
[282,] 0.0209321163 3.324969e-01 0.5803845977
[283,] -1.1507981230 -7.811807e-01 -0.9939405282
[284,] 1.4186749779 6.920921e-02 -0.0634052590
[285,] 0.8278937434 4.119342e-01 0.0681972733
[286,] 0.4297376418 5.919978e-01 1.1906419149
[287,] -0.0487195733 5.201953e-01 1.0505431454
[288,] 0.5301297642 -6.627776e-01 -1.9938608094
[289,] -0.6676805076 2.399644e-01 -0.3507889266
[290,] -1.1866543168 -5.714432e-01 -0.4549840661
[291,] 1.3296738641 -3.037132e-01 -0.3575429937
[292,] -0.6410393068 -4.686836e-02 -0.0801738676
[293,] 0.2010760637 -5.458123e-01 -0.3404022237
[294,] 1.2560847312 9.019229e-01 1.0152358719
[295,] -1.8156411946 -7.984624e-01 -1.2244304298
[296,] -0.6087604194 -6.433610e-01 0.7505708093
[297,] -0.8521680424 -5.610586e-02 -0.6399068622
[298,] -1.2690247301 -9.354994e-01 -0.0407172545
[299,] -0.6392237540 7.474636e-01 0.2636562540
[300,] -0.3208828699 5.313820e-01 0.5924383389
[301,] -0.5917384809 -3.431409e-01 -0.9729511588
[302,] 0.7398230512 5.034846e-01 1.0292291766
[303,] -2.1315514239 -9.695901e-01 -1.1844034403
[304,] -0.9393352947 3.625334e-01 1.4738168277
[305,] -0.5078137775 -1.072228e+00 -2.1097207334
[306,] -1.5444911635 -5.978234e-01 -1.0922139277
[307,] 0.3222937015 -4.963874e-02 -0.4562186345
[308,] 0.3157290329 -6.635592e-01 -1.0246915053
[309,] 0.9671707378 7.069453e-01 0.6267841564
[310,] -1.0159860836 2.470982e-01 0.2138749006
[311,] -1.4647574613 -5.154073e-01 -0.2893393077
[312,] -0.5391129938 -8.445515e-02 0.3952272427
[313,] 0.5609670776 1.411549e-01 0.2553344909
[314,] 1.0282409697 9.088285e-01 -0.2988941169
[315,] -0.5481978141 8.139748e-02 0.5679975790
[316,] -1.0626872519 -9.435713e-01 -0.4694586464
[317,] 0.3858533066 1.031710e-01 0.5142065738
[318,] -0.7499666746 2.756825e-01 0.8157199814
[319,] 0.9798052570 4.841253e-01 1.2941888097
[320,] 0.5953488112 -4.475553e-02 -1.5532766220
[321,] -0.6372062806 -2.049611e-01 -1.8422060750
[322,] -0.7114139435 -1.309014e+00 -1.4416595011
[323,] -0.5915801616 9.704658e-02 -1.0961151771
[324,] 1.8663119070 1.096958e+00 1.1657996375
[325,] 0.0989127148 1.452490e-02 -1.0701165538
[326,] -1.7277981423 -9.409071e-01 1.4173168862
[327,] 0.5650189098 3.298338e-01 -0.0700237495
[328,] 0.1316764791 4.503867e-01 -0.7590105197
[329,] 1.2064345674 1.592536e-01 0.4163301013
[330,] -0.7306106464 -1.447086e-01 -0.5326260164
[331,] 0.9114570566 4.288888e-01 -0.5320885653
[332,] 0.7411042574 1.024646e+00 1.7370086185
[333,] 0.2742027321 -1.184494e-01 0.5345936927
[ reached getOption(“max.print”) — omitted 9667 rows ]
> n=length(Z)
> m=0 #both n and m will be used in calculating the 0.99 confidence interval for last part of Question 1a
> con.level<-0.99 # this is the level of confidence
> Zed<-sqrt(0.995) # this the z value for calculating confidence interval
> T<-Zed/sqrt(n)
> se<-sd(T) # output the standard error
> CI<-0.99*se #confidence interval
> LowerLimit<-m-CI
> UpperLimit<-m+C
> #########
> ####Question 1 B
> cat(“MLE estimate of E[Z1]=”,mean(Z[,1]),”n”)
MLE estimate of E[Z1]= 0.008552179
> cat(“MLE estimate of E[Z2]=”,mean(Z[,2]),”n”)
MLE estimate of E[Z2]= 0.0008330524
> cat(“MLE estimate of E[Z3]=”,mean(Z[,3]),”n”)
MLE estimate of E[Z3]= 0.003962192
> cat(“MLE estimate of standard deviation of Z1=”,sd(Z[,1]),”n”)
MLE estimate of standard deviation of Z1= 1.00808
> cat(“MLE estimate of standard deviation of Z2=”,sd(Z[,2]),”n”)
MLE estimate of standard deviation of Z2= 0.63917
> cat(“MLE estimate of standard deviation of Z3=”,sd(Z[,3]),”n”)
MLE estimate of standard deviation of Z3= 1.003801
> #########
> ####Question 1 C
> ##Kendall’s Correlation
> cat(“Estimate of kendall’s correlation between Z1 and Z2=”,cor(Z[,1],Z[,2],method=”kendall”), “n”)
Estimate of kendall’s correlation between Z1 and Z2= 0.4385115
> cat(“Estimate of kendall’s correlation between Z1 and Z3=”,cor(Z[,1],Z[,3],method=”kendall”), “n”)
Estimate of kendall’s correlation between Z1 and Z3= 0.2745759
> cat(“Estimate of kendall’s correlation between Z2 and Z3=”,cor(Z[,2],Z[,3]
+ ,method=”kendall”), “n”)
Estimate of kendall’s correlation between Z2 and Z3= 0.4418381
>
> ####Spearsman’s Correlation
> cat(“Estimate of Spearma’s correlation between Z1 and Z2=”,cor(Z[,1],Z[,2],method=”spearman”), “n”)
Estimate of Spearma’s correlation between Z1 and Z2= 0.6179661
> cat(“Estimate of Spearman’s correlation between Z1 and Z3=”,cor(Z[,1],Z[,3],method=”spearman”), “n”)
Estimate of Spearman’s correlation between Z1 and Z3= 0.4013849
> cat(“Estimate of Spearman’s correlation=”,cor(Z[,2],Z[,3],method=”spearman”), “n”)
Estimate of Spearman’s correlation= 0.6231296
> ####Question 1 d
> ##
> U.tcopula<-pt(Z,dof)#gennerates a sample (U1, U2) from the t- copula
> U.Gaussiancopula<-pnorm(Z,0,1) #generates sample (U1,U2) from Gaussian Copula
##2a Maximum Liklihood estimate
Xdata<-c(0.15,0.10,0.39,0.17,8.39,30.77,2.53,0.26,8.71,85.99)
Npara<-length(Xdata)
mTrue<-mean(Xdata)
SigTrue<-sd(Xdata)
sim<-exp(rnorm(1000,mTrue,SigTrue))
sigMLE<-sd(log(sim))
cat(“MLE lamda=”, “MLE sigma=”, sigMLE,”n”)
##2b Posterior Mean and sdev
#Postrior mean and standard devition
cat(“mu MCMC Posterior mean=”,mean(Xdata), “Posterior Standard deviaion=”, sd (Xdata))
## 2c
##Bayes Posterior Mean and Sdve
Posteriormean=mean(Xdata)
Posteriormean
[1] 13.746
PosteriorSdev=sd(Xdata)
PosteriorSdev
[1] 27.08933
mydata=rgamma(100,1,0.5)
nMydata=mean(mydata)
sigMydata=sd(mydata)
cat(“Alpha Estimate=”,nMydata,”Sigma Estimate=”,sigMydata)
Alpha Estimate= 1.907266 Sigma Estimate= 1.779147
Mydata
## 2a Maximum Liklihood estimate
Xdata<-c(0.15,0.10,0.39,0.17,8.39,30.77,2.53,0.26,8.71,85.99)
> Npara<-length(Xdata)
> mTrue<-mean(Xdata)
> SigTrue<-sd(Xdata)
> sim<-exp(rnorm(1000,mTrue,SigTrue))
> sigMLE<-sd(log(sim))
> cat(“MLE lamda=”, “MLE sigma=”, sigMLE,”n”)
MLE lamda= MLE sigma= 27.16486
##2b Posterior Mean and sdev
> #Postrior mean and standard devition > cat(“mu MCMC Posterior mean=”,mean(Xdata), “Posterior Standard deviaion=”, sd (Xdata)) mu MCMC Posterior mean= 13.746 Posterior Standard deviaion= 27.08933
|
|
|
|
|
###Question 2d
mydata=rgamma(100,1,0.5)
> nMydata=mean(mydata)
> sigMydata=sd(mydata)
> cat(“Alpha Estimate=”,nMydata,”Sigma Estimate=”,sigMydata)
Alpha Estimate= 1.907266 Sigma Estimate= 1.779147
> Mydata
[1] 2.44136898 0.85149048 0.41384965 0.84938249 0.58331153 1.27044932 2.12686491
[8] 1.36902755 9.52569191 5.68138784 0.76164651 1.92839205 0.67777985 2.06393150
[15] 0.72339954 3.62025169 0.17015991 0.63162312 0.73862618 6.11082158 0.34913997
[22] 4.95750348 6.29234613 8.63575314 2.70652608 1.01832155 0.58920045 2.30464240
[29] 1.28160445 1.47862286 1.34225547 0.21040981 0.43350751 0.61302264 2.82009340
[36] 0.67102777 0.05862084 3.90269521 2.02580475 2.72265960 1.21655099 0.43253271
[43] 0.45952903 0.47923713 0.02389339 0.89271301 2.84006227 4.54072762 1.46763958
[50] 2.14184923 0.81090395 2.29649594 0.51929692 3.38478321 0.15130158 1.13247705
[57] 1.01459582 3.19501380 0.09954389 0.77016261 0.55715698 1.48989538 0.58341984
[64] 0.47705564 0.15832176 1.75816313 4.04534005 0.27093537 0.76474419 0.60988719
[71] 0.17588551 0.34920563 0.28925759 0.79391739 2.48770786 0.04930602 2.59389880
[78] 2.86008462 4.52476874 0.84937332 0.39871474 0.78114947 0.44275953 0.64414873
[85] 3.99213029 3.16239544 2.40686075 7.15048162 0.40343135 0.87551093 0.91287086
[92] 0.05226923 2.54082561 1.85557218 0.75560271 1.49962976 1.79272573 1.02665746
[99] 1.01812117 2.24809242
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Contact Essay is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Essay Writing Service Works
First, you will need to complete an order form. It's not difficult but, in case there is anything you find not to be clear, you may always call us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download