What opens first in response to a threshold stimulus?
Voltage Gated (activation gates) Na+ channels open and Na+ diffuses in the cytoplasm
What characterizes depolarization, 1st phase of action potential?
Membrane changes from a negative value to a positive value
What characterizes repolarization, 2nd phase of action potential?
Once the membrane depolarizes to a peak value of 30+, it repolarizes to to its negative resting value of -70
What event triggers the generation of an action potential?
( This is the minimum value required to open enough voltage-gated Na+ channels so that depolarization is irreversible.)
What is the first change to occur in response to a threshold stimulus?
Voltage-gated Na+ channels change shape, and their activation gates open
Resting State
All gated Na+ and K+ channels are closed
Step 2
During the depolarization phase of the action potential, open Na+ channels allow Na+ ions to diffuse into the cell.
This inward movement of positive charge makes the membrane potential more positive (less negative). The depolarization phase is a positive feedback cycle where open Na+ channels cause depolarization, which in turn causes more voltage-gated Na+ channels to open.
Step 3
Repolarization; Na+ channels are inactivating and K+ Channels Open
Step 4
Hyperpolarization; Some K+ channels remain open and Na+ channels reset
How many gates/states do voltage gated Na+ channels have?
two gates and three states
Closed Na+
at the resting state, no Na+ enters the cell through them
Opened Na+
opened by depolariztion, allowing Na+ to enter the cell
Inactivated
channels automatically blocked by inactivation gates soon after they open
How many gates/states do voltage gated K+ channels have?
one gate, two states
Closed K+
at the resting state, no K+ leaves
Opened K+
at depolarization, after delay, allowing K+ to leave
Why is an action potential self-generating?
The Na+ diffusing into the axon during the first phase of the action potential creates a depolarizing current that brings the next segment, or node, of the axon to threshold.
Why does regeneration of the action potential occur in one direction, rather than in two directions?
At the peak of the depolarization phase of the action potential, the inactivation gates close. Thus, the voltage-gated Na+ channels become absolutely refractory to another depolarizing stimulus.
What changes occur to voltage-gated Na+ and K+ channels at the peak of depolarization?
Closing of voltage-gated channels is time dependent. Typically, the inactivation gates of voltage-gated Na+ channels close about a millisecond after the activation gates open. At the same time, the activation gates of voltage-gated K+ channels open.
What marks the end of the depolarization phase?
As voltage-gated Na+ channels begin to inactivate, the membrane potential stops becoming more positive This marks the end of the depolarization phase of the action potential. Then, as voltage-gated K+ channels open, K+ ions rush out of the neuron, following their electrochemical gradient. This exit of positively-charged ions causes the interior of the cell to become more negative, repolarizing the membrane.
The repolarization phase of the action potential, where voltage becomes more negative after the +30mV peak, is caused primarily by __________.
The opening of voltage-gated K+ channels allows K+ ions to exit the cell, repolarizing the membrane. In other words, the exit of K+ ions makes the membrane potential more negative. K+ also exits through leakage channels during this phase because leakage channels are always active. However, most of the membrane permeability to K+ during this phase is due to voltage-gated channels. Voltage-gated K+ channels make the action potential more brief than it would otherwise be if only leakage channels were available to repolarize the membrane.
During an action potential, hyperpolarization beyond (more negative to) the resting membrane potential is primarily due to __________.
The large number of voltage-gated K+ channels opening during the repolarization phase quickly makes the membrane potential more negative as positively-charged K+ ions leave the cell. K+ ions continue to leave through open channels as the membrane potential passes (becomes more negative than) the resting potential. This hyperpolarization phase of the action potential is therefore due to K+ ions diffusing through voltage-gated K+ channels. The membrane potential remains more negative than the resting potential until voltage-gated K+ channels close. This period of hyperpolarization is important in relieving voltage-gated Na+ channels from inactivation, readying them for another action potential.
During the hyperpolarization phase of the action potential, when the membrane potential is more negative than the resting membrane potential, what happens to voltage-gated ion channels?
Voltage-gated K+ channels are opened by depolarization. This means that as the membrane potential repolarizes and then hyperpolarizes, these K+ channels close. With the closing of voltage-gated K+ channels, the membrane potential returns to the resting membrane potential via leakage channel activity. Resetting voltage-gated Na+ channels to the closed (but not inactivated) state prepares them for the next action potential.
During the hyperpolarization phase of the action potential, voltage eventually returns to the resting membrane potential. What processes are primarily responsible for this return to the resting membrane potential?
Voltage-gated K+ channels close. K+ and Na+ diffuse through leakage channels.
Remember! This is just a sample.
You can get a custom paper by one of our expert writers.
Get your custom essay
Helping students since 2015
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Contact Essay is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Essay Writing Service Works
First, you will need to complete an order form. It's not difficult but, in case there is anything you find not to be clear, you may always call us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download