The table below shows the chi-square test between management incentive and carbon emission reduction. The Pearson Chi-Square value is 271.192a with degree of freedom of 280 and p-value 0.636. The Likelihood Ratio has a value of 260.832 with degree of freedom of 280 with p-value 0.434. Linear-by-Linear Association has a value of 0.613 with a degree of freedom of 1 and p-value of 434.
Since from the table the p-value is 0.636>0.05 at 95% confidence level it can be conclude that management incentive has no significant relationship with carbon emission reduction
Chi-Square Tests |
|||
Value |
df |
Asymptotic Significance (2-sided) |
|
Pearson Chi-Square |
271.192a |
280 |
.636 |
Likelihood Ratio |
260.832 |
280 |
.788 |
Linear-by-Linear Association |
.613 |
1 |
.434 |
N of Valid Cases |
387 |
||
a. 558 cells (99.3%) have expected count less than 5. The minimum expected count is .17. |
The table below has the additional information on the Pearson correlation coefficient and Spearman correlation coefficient between management incentive and carbon emission reduction. The Pearson correlation coefficient has a value of -0.040 and asymptotic standardized error of 0.027. The Spearman’s correlation coefficient has a value of 0.27 and asymptotic standardized error of 0.054
Symmetric Measures |
|||||
Value |
Asymptotic Standardized Errora |
Approximate Tb |
Approximate Significance |
||
Interval by Interval |
Pearson’s R |
-.040 |
.027 |
-.783 |
.434c |
Ordinal by Ordinal |
Spearman Correlation |
.027 |
.054 |
.539 |
.590c |
N of Valid Cases |
387 |
||||
a. Not assuming the null hypothesis. |
|||||
b. Using the asymptotic standard error assuming the null hypothesis. |
|||||
c. Based on normal approximation. |
The table below shows the chi-square test between climate change integration and carbon emission reduction. The Pearson Chi-Square value is 260.168a with degree of freedom of 280 and p-value 0.797. The Likelihood Ratio has a value of 192.967with degree of freedom of 280 with p-value 1.000. Linear-by-Linear Association has a value of 0.445 with a degree of freedom of 1 and p-value of 0.505.
Since from the table the p-value is 0.797>0.05 at 95% confidence level it can be conclude that management incentive has no significant relationship with carbon emission reduction
Chi-Square Tests |
|||
Value |
df |
Asymptotic Significance (2-sided) |
|
Pearson Chi-Square |
260.168a |
280 |
.797 |
Likelihood Ratio |
192.967 |
280 |
1.000 |
Linear-by-Linear Association |
.445 |
1 |
.505 |
N of Valid Cases |
387 |
||
a. 557 cells (99.1%) have expected count less than 5. The minimum expected count is .11. |
The table below has the additional information on the Pearson correlation coefficient and Spearman correlation coefficient between management incentive and carbon emission reduction. The Pearson correlation coefficient has a value of -0.034 and asymptotic standardized error of 0.019. The Spearman’s correlation coefficient has a value of -0.04 and asymptotic standardized error of 0.050
Symmetric Measures |
|||||
Value |
Asymptotic Standardized Errora |
Approximate Tb |
Approximate Significance |
||
Interval by Interval |
Pearson’s R |
-.034 |
.019 |
-.667 |
.505c |
Ordinal by Ordinal |
Spearman Correlation |
-.004 |
.050 |
-.079 |
.937c |
N of Valid Cases |
387 |
||||
a. Not assuming the null hypothesis. |
|||||
b. Using the asymptotic standard error assuming the null hypothesis. |
|||||
c. Based on normal approximation. |
ANOVA is the analysis of variance. ANOVA uses anova table to compare the means of two or more than two variables. In cases where we cannot use the Student-t distribution because we have more than two variables we apply the ANOVA test. Comparing for example the means of the countries, industries and carbon dioxide emissions
The regression analysis relate integration of climate change in business strategy and carbon emission
The table below shows the summary of ANOVA and regression test. Multiple R is 0.039849, R square is 0.001588, Adjusted R square is -0.00101 with a standard error of 56.37351.
SUMMARY OUTPUT |
|
Regression Statistics |
|
Multiple R |
0.039849 |
R Square |
0.001588 |
Adjusted R Square |
-0.00101 |
Standard Error |
56.37351 |
Observations |
387 |
The table below is an ANOVA table giving the columns for source of variation, degree of freedom, sum of squares, mean square F value. The regressed has degree of freedom of 1, sum of squares of 1945.922, mean square of 1945.922. The residual has a degree of freedom of 385, sum of squares of 1223519, mean square of 3177.972. The total sum of squares is 1225465 and degree of freedom of 386. The overall F-value is 0.612315.
Table 6. Analysis of variance table
ANOVA |
||||||||
df |
SS |
MS |
F |
Significance F |
||||
Regression |
1 |
1945.922 |
1945.922 |
0.612315 |
0.434398 |
|||
Residual |
385 |
1223519 |
3177.972 |
|||||
Total |
386 |
1225465 |
The table below shows the intercept and coefficient of the regression model. The intercept is 7.15604 and coefficient is -5.9266. The intercept also has a standard error of 9.335796, t statistics of 0.766516 and p-value of 0.443839. The x variable has a standard error of 7.573875, t statistics of 0.78251 and p-value of 0.434398.
Table 7. Coefficient of Intercept and independent variable
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 95.0% |
Upper 95.0% |
|
Intercept |
7.15604 |
9.335796 |
0.766516 |
0.443839 |
-11.1995 |
25.51157 |
-11.1995 |
25.51157 |
X Variable 1 |
-5.9266 |
7.573875 |
-0.78251 |
0.434398 |
-20.8179 |
8.964734 |
-20.8179 |
8.964734 |
The table below shows the ANOVA table. The table has on the column the source of variation, sum of square, degree of freedom, mean square, F value, p-value and critical value of F. Rows has sum of squares of 612496.5, degree of freedom of 365, mean square of 1590.9, F-value of 0.999255 and p-value of 0.502916 with critical value of F being 1.182778. The column has the sum of squares of 150.8793, degree of freedom of 1, mean square of 150.8793, F-value 0.094768 and p-value of 0.758367 and the critical value of F to be 3.865725. The error or the residual has sum of squares of 612953.4, degree of freedom of 385, and mean square of 1592.087. The total sum of squares is 1225601 and total degree of freedom of 771.
The F value of the columns and rows are 0.999255 and 0.094768 respectively.
Table 8. Analysis of variance table
ANOVA |
||||||
Source of Variation |
SS |
df |
MS |
F |
P-value |
F crit |
Rows |
612496.5 |
385 |
1590.9 |
0.999255 |
0.502916 |
1.182778 |
Columns |
150.8793 |
1 |
150.8793 |
0.094768 |
0.758367 |
3.865725 |
Error |
612953.4 |
385 |
1592.087 |
|||
Total |
1225601 |
771 |
T-TEST
T-test is a statistical test used to compare means of the variables. It enable us to make conclusions based on the findings we get. For example, on the data in question about the percentage change of carbon dioxide emitted in metric tons, comparing the mean of the current emissions by the previous emissions can help us to establish if there is statistical difference in the means of the two seasons. T-test uses the Student-t distribution table (Lyamin, 2011) (Dongming Zhu, 2010).
H0: Integration of climate change in business strategy has no significant relationship with carbon emission reduction.
H1: Integration of climate change in business strategy has significant relationship with carbon emission reduction.
One-Sample Statistics |
||||
N |
Mean |
Std. Deviation |
Std. Error Mean |
|
Carbon emission reduction |
387 |
.203385 |
56.3451908 |
2.8641870 |
In the table below, the t-value is 0.071, degree of freedom of 386, mean difference of 0.2033853 and confidence interval (-5.427975, 5.83474) at 95% confidence interval
One-Sample Test
|
From the above table of one-sample statistics the mean is 0.203385
The p-value on the second table is 0.943, this is higher than the reference confidence level of p-value 0.05. We fail to reject the null hypothesis and conclude that Integration of climate change in business strategy has no significant relationship with carbon emission reduction
From the above findings it is shown that the highest number of factories emitting carbon dioxide in the atmosphere is from Japan at 51.9% with the least number of countries from Indonesia at only 0.5%. This is due to the fact that Japan is more developed than Indonesia and therefore, has more active industries.
From the industries observed, it be observed that many of them offer management incentives to the employees as 82.7% saying they offer incentives to the employees. It is also observed that majority of the industries agreeing by the fact that they integrate climate change in their business strategy as 89.4% agreeing that they integrate climate change in their business strategy.
From the analysis we observed that, there is no significant relationship between integrate climate change in the business strategy and the reduction of carbon dioxide emission. Many industries have adopted the integration but the implementation is lacking. This might be reason for the result of t-test analysis (Taeger, 2014) (Taeger, 2014) (Taeger, 2014).
More research should be done on the same variables from other countries to observe the difference on how different countries handle the issue on emission. This can help to address some challenges other countries face in addressing the issue of carbon dioxide emission and how those challenges can be tackled (I., 2012) (MABE FRANKLIN NANTUI, 2012) (OGUNBAMERU B.O., 2013) (PANOV VIKTOR I., 2011)..
Further research should be conducted on the different kinds of knowledge and specifically engage on ecological, social, physical, and health science.
Research touching on the implications of certain choices across scales and sectors to optimize the benefits and bring understanding net effects on different scales of decision making.
Further researches can focus the mechanisms which are flexible in identifying and addresses new scientific challenges emerging in the daily basis. It should also focus on the interaction by the decision makers because of the dynamic needs. More on monitoring, projecting and assessing the change in climate (Andre J. C., 2005) (Brönnimann, 2015) (Brönnimann, 2015)
References
Andre J. C., M. M. L. J. P., 2005. From GICC, the French research programme on management and impacts of climate change, to circle, a coordinated European initiative including Russia. p. 7.
Ballou,b, 2015. exploring the strategic integration of sustainbility. 26(sustanable development ), pp. 265-288.
Brönnimann, S., 2015. [Advances in Global Change Research] Climatic Changes Since 1700 Volume 55 || Climatic Changes Since 1700. p. 155.
Brönnimann, S., 2015. [Advances in Global Change Research] Climatic Changes Since 1700 Volume 55 || The Machinery: Mechanisms Behind Climatic Changes. p. 96.
Dongming Zhu, J. W. G., 2010. A generalized asymmetric Student- distribution with application to financial econometrics.
I., D. L., 2012. CR AND OTHER SPACE CLIMATE FACTORS INFLUENCED ON THE EARTH’S CLIMATE CHANGE. DORMAN LEV I., p. 11.
Lyamin, O. O., 2011. On the rate of convergence of the distributions of certain statistics to the Laplace and student distributions.
MABE FRANKLIN NANTUI, S. D. B. O.-A. Y., 2012. ADAPTIVE CAPACITIES OF FARMERS TO CLIMATE CHANGE ADAPTATION STRATEGIES AND THEIR EFFECTS ON RICE PRODUCTION IN THE NORTHERN REGION OF GHANA. p. 9.
OGUNBAMERU B.O., M. S. I. Y., 2013. CAPACITY BUILDING FOR CLIMATE CHANGE ADAPTATION: MODULES FOR AGRICULTURAL EXTENSION CURRICULUM DEVELOPMENT. p. 6.
PANOV VIKTOR I., K. S. R., 2011. CLIMATE CHANGE AND THE ECOLOGICAL PSYCHOLOGY. p. 12.
Taeger, D. K. S., 2014. Statistical Hypothesis Testing with SAS and R (Taeger/Statistical Hypothesis Testing with SAS and R) || Statistical hypothesis testing. p. 14.
Taeger, D. K. S., 2014. Statistical Hypothesis Testing with SAS and R (Taeger/Statistical Hypothesis Testing with SAS and R) || Tests on the Mean. p. 17.
Taeger, D. K. S., 2014. Statistical Hypothesis Testing with SAS and R (Taeger/Statistical Hypothesis Testing with SAS and R) || Tests on the variance. p. 12.
Wiley, 2011. british journal of management. What Makes Better Boards? A Closer Look at Diversity and Ownership.
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Contact Essay is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Essay Writing Service Works
First, you will need to complete an order form. It's not difficult but, in case there is anything you find not to be clear, you may always call us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download