The world is on the brink of destruction. Every year there is a massive number of species stepping towards extinction. As educated human beings it is our role to understand the gravity of the situation and make changes accordingly to lead a better life and help other living beings co-exist. Our dependence on fossil fuels has made the earth undergo drastic changes in the past decade and we still seem to have been unaffected by it. In this project initiative, we came up with a strong idea that could minimize the usage of fossil fuels to generate electricity using piezoelectric transducers.
We have developed a low cost and efficient circuit to harness energy that can be used to drive any DC load using a rechargeable battery. Before making the prototype we modelled a piezoelectric diaphragm on ANSYS Academic to observe the total deformation and equivalent stress it undergoes when a weight of 70kg is applied on it.
We humans are dependent on fossil fuels for almost all our activities.
Whether it is for transportation, or generation of electricity, usage of fossil fuels is just increasing day by day. The harmful effect of fossil fuels is slowly being felt and noticed. There are countries which have already switched over to driving electric cars to reduce the amount of pollution, to reduce global warming and all other factors associated with it. There are many other methods by which we can reduce our dependency on it. One of the major methods to harness energy is by using piezoelectric devices.
These devices are cost efficient, easy to manufacture, and the output is fairly decent dependent on the application. There are researches and experiments going on to increase the efficiency of these devices to yield greater output.
The innovation aspect that comes along with piezoelectric devices and their usage is tremendous. In many countries, these sensors are installed on roads and speed breakers to generate electricity whenever a vehicle passes over it, and this electricity is used to power the street lamps. Another interesting application of these sensors is in Oxygen pumps for divers when they go deep into the sea.
We have exploited the properties of the diaphragm, which converts mechanical energy (any kind of stress or vibration) to electric energy, thereby feeding this electric energy to power any DC load.
Piezoelectric sensors convert mechanical stress applied onto it to electrical energy. They are made up of crystals which are polar in nature without electrical field being applied. When no force is applied on the sensor, the charges are exactly balanced and the net dipole moment is zero producing zero electrical voltage across its terminals. When mechanical stress is applied, the charges go out of balance. A non-zero dipole moment builds up producing electrical voltage. Piezoelectric sensors can be modelled as an alternating current source (I) connected in parallel with a Capacitance (C) and Resistance (R) as depicted .
Piezoelectric materials belong to a wider class of materials called ferroelectrics. Ferroelectric material has a property that their molecular structure is oriented in such a way that material exhibit local charge separation, known as an electric dipole. These electric dipoles are randomly oriented throughout material composition, but when the material is heated above a certain point known as Curie temperature, and a very strong electrical field is applied, the electric dipoles reorient themselves relative to the electric field; this process is called polling. After the material is cooled, the dipoles maintain their orientation and the material is said to be poled. After the completion of the polling process the material will exhibit the piezoelectric effect.
The model of a piezoelectric sensor is shown. We have observed and calculated the deformation it undergoes when subjected to a force in the range of 100 to 500 N. The modelling was done on ANSYS Academic. The material properties were considered as for the commercial use of these sensors. ANSYS finite element methods were used for demonstrating and analysis of piezoelectric materials. The single piezoelectric sheet model was presented. The basic characteristic of the piezoelectric material was analyzed and the affecting factors of characteristics were derived.
The overall circuitry consists of 10 piezoelectric sensors connected in parallel. The output is given to a bridge rectifier circuit of four diodes for rectification. The DC output of the bridge rectifier is connected to an energy storage device (Li-battery/Capacitor). But since the charging of a battery has to be constant, we have used a voltage regulator LM317EML in between and an auto-cutoff circuit using the IC 741 in comparator configuration to isolate the battery from the circuit when fully charged.
To design the Voltage regulator, we have used the standard formula
Vout = 1.25V (1 + R1/R2)
The capacitor value for stabilizing the output from the regulator is 0.22uF as mentioned in the data sheet of LM317EML.
This design was constructed keeping cost efficiency in mind. We can use other harvesting circuits as well, but at the expense of added cost. This project aims to reduce the use of fossil fuels and hence this design can be implemented further in spray pumps used by farmers to spray pesticides and fertilizers. The use of a Li-Battery as energy storage device is disadvantage for this application because the charging time will be very high.
Remember! This is just a sample.
You can get a custom paper by one of our expert writers.
Get your custom essay
Helping students since 2015
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Contact Essay is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Essay Writing Service Works
First, you will need to complete an order form. It's not difficult but, in case there is anything you find not to be clear, you may always call us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download