Large-scale 100% renewable electricity systems can be reliable withoutbase-load power stations and without vast amounts of storage.
To address the above-mentioned issues some solutions such as geographical diversification of power generation sites, ionic liquids storages, pumped hydro reserves, electric thermal storage, flywheel energy storage system and vehicle-to-grid options can be adopted. Electric Thermal Storage (ETS) Electric thermal storage (ETS) units are used as temperature regulator for environmental profile for both commercially and domestically. These units are heat accumulator within them, which can be used later as required for temperature control in the environment.
ETS in combination with wind and hydro can be used for meeting the electricity requirements of a small grid. Refer to case study conducted by Wong and Pinard, 2017) on Yukon Electric Grid (YEG), in which wind and ETS were used to achieve required load.
Optimization model for wind and ETS source (Wong and Pinard, 2017) Ioinic Liquids (IL) Ionic Liquids (ILs) can be defined as their melting points are lower than 100 °C.
some examples of application of Ionic liquids are LI/NA Ion Battery Electrolytes, Lithium Sulfure Battery Electrolytes, Lithium €’ Oxygen Battery Electrolytes, Fuel Cell Electrolytes, Electroactive Carbons from Ionic Liquids. As per Watanabe et al., 2017, ILs cab be very suitable Because of its distinctive properties namely non-volatility, high thermal stability and high ionic conductivity, ILs are appropriate for the storage of energy (Watanabe et al., 2017). Thermal Storage and Molten Salt Batteries: Water in steam form can be used to generate electricity and thus water is one of the thermal energy storage material.
One of the common usages for thermal storage is that of Molten Salt batteries, which have a high melting temperature. In this case, molten salts do not change their state and the thermal energy gets stored in them. Later, once the heated salt is pumped through a steam generator, electricity is generated from the steam produced. A step further, Molten Salt batteries and solar thermal power can contribute to 100% Renewable energy system.
Renewable power methane is made using the excess electricity during the process of methanation, an alternate Natural and renewable Gas (SNG). There are numerous usage of these gases for instances it can be used for heating, alternate to fossil fuels. MRESOM (Multi-Region Energy System Optimization Model) developed by (Pleџmann et al., 2014) has effectively used the above process in its RE100 model. The figure below is an illustration of the model.
Block Diagram for RE100 model of MRESOM source (Pleџmann et al., 2014) Flywheel Energy Storage System (FESS) Flywheel Energy Storage System (FESS) stores energy in kinetic form. They have longer life than batteries(Wicki and Hansen, 2017). Added significant use for FESS is its application with wind turbine as it can be used for variable-speed wind generators for increasing the dynamic working of the FESS (Cimuca et al., 2010). Refer to (Arani et al., 2017) for various applications. It is argued that FESS can be successfully used in conjunction with solar generation units, wind turbine as well as Photo Voltoic Cells. FESS application with Wind Turbine(Arani et al., 2017) FESS application with PV (Arani et al., 2017)
Power system with pumped hydro storage (Kapsali and Anagnostopoulos, 2017) Vehicle to Grid (V2G) The Vehicle to Grid is based on the ability of bi-directional energy movement between electric vehicles and the electricity grid. In a Vehicle to Grid system, additional battery capacity offered by a vehicle is used to retain electricity equilibrium grid among peak and off-peak periods. At off peak time, electricity flows from the grid to the electric vehicle whereas during the peak hours when electricity demand is high, excess energy stored in vehicle battery is sent back to the electricity grid. In this way, an electric vehicle is essentially converted to an energy capacity resource instead of being a load on the energy grid. With the advent of larger capacity battery electric vehicles a greater flexibility has become available for analyzing the pure electricity arbitrage using V2G, rather than energy arbitrage between transport fuels (Deane et al., 2010).
Figure below illustrates simplified schematics of a standard Vehicle to Grid system. Simplified Vehicle-to-Grid (V2G) Schematic (Deane et al., 2010) and bio-fueled gas turbines, photovoltaic (PV) cells and wind. The use of these technologies exhibited that a base load power plant is not required even during the peak hours. Also, all these simulations resulted in achieving the reliability standards set by NEM. Later, a further study was performed for comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market by (Elliston et al., 2014). This study established that most of the fossil fuel scenarios cannot contest the financial affordability of a 100% renewable.
In nutshell, with the help of above detailed discussion it would be safe to say that as world is shifting towards renewable energy sources, researchers are focusing on eliminating the use of base load power stations running on fossil fuels and their investigations have successfully used different technologies to meet the peak load energy requirements. Thus, it is evident that 100% renewable energy system can perform without the support a base load power station.
Remember! This is just a sample.
You can get a custom paper by one of our expert writers.
Get your custom essay
Helping students since 2015
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Contact Essay is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Essay Writing Service Works
First, you will need to complete an order form. It's not difficult but, in case there is anything you find not to be clear, you may always call us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download