MB2080 Briefing Note
The introduction of non-indigenous invertebrate species in the ballast water of ships
PURPOSE
The purpose of this briefing note is to outline the potential risks of the introduction of Non-Indigenous Species (NIS) by ballast water and to present recommendations to decrease harmful effects of this event.
BACKGROUND
Historical records and studies indicate that fouling organisms first crossed oceans on man-made ships, where marine species encrusted onto wooden-hulled vessels were carried from port to port (Bax et al. 2003). As intra and inter-colony trade routes were established and immigration increased (Hewitt et al. 2004), maritime traffic across oceans led to an increased number of NIS in coastal water environments (Reise et al. 1998). In Australia, the history of marine biological invasions most likely began with European contact around the 1800s with exploration and colonisation (Hewitt et al. 2004). While wooden ships were still the main type of vessel used, crews would often scrub the hull and anchor chain at stops along the voyage (Bax et al. 2003). The shift from wooden-hulled to steel-hulled vessels in the modern era leading up to World War 1 led to the shift from dry ballast to water ballast (Hewitt at al. 2004) as water ballast better controls trim, draft and stability, and helps to maintain safe and efficient transit conditions (Bailey 2015, Niimi 2004). The first signs of water ballast as a potential dispersal mechanism for holo, mero and tycho-plankton were recognised in the late 1890s (Bailey 2015, Hewitt et al. 2004).
Get Help With Your Essay
If you need assistance with writing your essay, our professional essay writing service is here to help!
Essay Writing Service
Becoming an invasive species is not easy, as many criteria must be met for that categorisation. A majority of potential invaders die as they cannot survive the dark and dirty conditions of ballast water tanks over long voyages. Further, invasive species that survive are likely to be confronted with unsuitable environmental conditions at the port of discharge, and even then, suitable species often fail to establish themselves. Most species that succeed in establishment fail to become invasive (Bax et al. 2003); however, the ones that do bring significant risk factors with them.
Newly introduced NIS can threaten biodiversity, marine industries and human health (Bax et al. 2003). Not only do NIS species alter the population of indigenous species by harming them directly, but they also alter the overall ecosystem. They also impact community and ecosystem processes and are therefore a significant force of change in global marine and estuarine communities (Ruiz et al. 2015). After identifying an increase in paralytic shellfish poisoning – whereby humans fall ill as a result of alkaloid toxin contaminated shellfish product consumption – Hallegraeff (1998) outlined a plausible scenario for the successful introduction and establishment of toxic dinoflagellate cysts in Australian waters. He stated that: 1) ballast water was taken in during seasonal planktonic blooms from Korean or Japanese ports, 2) survival of the resting cysts was high due to the voyage in dark ballast tanks, 3) after ballast water discharge, the germination of cysts was successful, accompanied with sustained growth and reproduction in Australian ports, and 4) coastal currents and domestic shipping led to further spreading and culminating under suitable environmental conditions in harmful algal blooms.
CURRENT STATUS
At any given moment, with transoceanic cargo shipping being truly global, ten thousand different species are being transported between bio-geographic regions in ballast tanks (Bax et al. 2003). The introduction of NIS into foreign habitats are therefore an inevitable consequence (Bastrop et al. 1998). While there is currently insufficient data to quantify the probability of invasion associated with any particular inoculum density (Bailey 2015, Ruiz et al. 2015), invertebrates appear to have higher breeding and establishment potential – which is increasing at a dramatic rate –because their diet and feeding behaviours suggest greater potential for extensive ecosystem alterations (Bax et al. 2003, Cohen et al. 1995).
The UN recognised that the transfer of invasive species across natural barriers is one of the greatest pressures to the world’s oceans and seas (David et al. 2019). The international convention for the control and management of ship’s ballast water and sediments (i.e. BMW convention) sets the global standards on ballast water management requirements with its aim to reduce the spread of potentially hazardous organisms among ports and other coastal areas (David et al. 2019).
RECOMMENDATION
For ballast water treatments to effectively reduce the density and richness of biota, and thus reduce the risk of transferring NIS (Bradie et al. 2010), ballast water management should satisfy each of the following criteria: 1) it must be effective at killing potential invaders, 2) it must be safe for the crew, 3) it must be environmentally friendly and 4) it must be affordable (Tamburri et al. 2002). Gollasch and Leppakoski (2007) proposed a management scenario that can achieve all of these. They suggest that the uptake of ballast water should be minimized or avoided in areas with outbreaks, infestations, sewage outfalls and phytoplanktonic blooms. Furthermore, ballast tanks should be cleaned on a timely basis in mid-ocean or, when the conditions are too rough to do so, under controlled arrangements in port or dry dock. Lastly, unnecessary discharge or uptake of ballast water should be avoided.
CONCLUSIONIt is evident that NIS are a key contributor to environmental change that can result from various human activities, whereby the global movement of ballast water by ships appears to be the largest single vector. Invertebrate species have a proportionately higher chance of invading foreign ports and coasts due to their ability to survive and withstand considerably harsher conditions than other phyla. Centuries of global shipping trade without defined ballast management has now led to thousands of potentially hazardous NIS invasions – the most survivable being invertebrate species – which, if unaddressed, has the potential to cause significant and irreparable harm.
REFERENCES
Bailey, SA 2015, ‘An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments’, Journal of Aquatic Ecosystem Health and Management, vol. 19, no. 3, pp. 261-268, viewed 19 August 2019, DOI:10.1080/14634988.2015.1027129
Bastrop, R, Jurss, K & Sturmbauer, C 1998, ‘Cryptic species in marine polychaete and their independent introduction from North America to Europe’, Molecular Biology and Evolution, vol. 15, no. 2, pp. 97-103, viewed 19 August 2019, DOI:10.1093/oxfordjournals.molbev.a025919
Bax, N, Williamson, A, Aquero, M, Gonzalez, E & Geeves, W 2013, ‘Marine invasive alien species: a threat to global biodiversity’, Marine Policy, vol. 27, no. 4, pp. 313-323, viewed 19 August 2019, DOI:10.1016/50308-597X(03)00041-1
Bradie, JN, Bailey, SA, van der Velde, G & MacIsaac, HJ 2010, ‘Brine-induced mortality of non-indigenous invertebrates in residual ballast water’, Marine Environmental Research, vol. 70, no. 5, pp. 395-401, viewed 19 August 2019, DOI:10.1016/j,marenvres.2010.08.003
Cohen, AN, Carlton, JT & Fountain MC 1995, ‘Introduction, dispersal and potential impacts of the green crab Carcinus maenas in San Francisco Bay, California’, Marine Biology, vol. 122, no. 2, pp. 225-237, viewed 19 August 2019, DOI:10.1007/BF00348935
David, M, Magaletti, E, Kraus, R & Marini, M 2019, ‘Vulnerability to bioinvasions: current status, risk assessment and management of ballast water through a regional approach – the Adriatic Sea’, Marine Pollution Bulletin, vol. NA, pp. NA, viewed 19 August 2019, DOI:10.1016/j.marpolbul.2019.06.057
Gollasch, S & Leppakoski E 2007, ‘Risk assessment and management scenarios for ballast water mediated species introductions into the Baltic Sea’, Aquatic Invasions, vol. 2, no. 4, pp. 313-340, viewed 19 August 2019, DOI:10.3391/ai.2007.2.4.3
Hallegraeff, GM 1998, ‘Transport of toxic dinoflagellates via ships ballast water: bioeconomic risk assessment and efficacy of possible ballast water management strategies’, Marine Ecology Progress Series, vol. 168, pp. 297-309, viewed 19 August 2019, DOI:10.3354/meps168297
Hewitt, CL, Campbell, ML, Thresher, RE, Martin, RB, Boyd, S, Cohen, BF, Currie, DR, Gomon, MF, Keough, MJ, Lewis, JA, Lockett, MM, Mays, N, McArthur, MA, O’Hara, TD, Pore, GCB, Ross, DJ, Storey, MJ, Watson, JE & Wilson RS 2004, ‘Introduces and cryptogenic species in Port Phillip Bay, Victoria, Australia’, Marine Biology, vol. 144, no. 1, pp. 183-202, viewed 19 August 2019, DOI:10.1007/s00227-003-1173-x
Niimi, AJ 2004, ‘Role of container vessels in the introduction of exotic species’, Marine Pollution Bulletin, vol. 49, no 9-10, pp. 778-782, viewed 19 August 2019, DOI:10.1016/j,marpolbul.2004.06.006
Reise, K, Gollasch, S & Wolff, WJ 1998, ‘Introduced marine species of the North Sea coasts’, Helgolaender Meeresuntersuchungen, vol. 52, pp. 219-234, viewed 19 August 2019, DOI:10.1007/BF02908898
Ruiz, GM, Carlton, JT, Grosholy, ED & Hines, AH 1997, ‘Global invasions of marine and estuarine habitats by non-invasive species: mechanisms, extent, and consequences’, Integrative and Comparative Biology, vol. 37, no. 6, pp. 621-632, viewed 19 August 2019, DOI:10.1093/icb/37.6.621
Tamburri, MN, Wasson K & Matusda M 2002, ‘Ballast water deoxygenation can prevent aquatic introductions while reducing ship corrosion’, Biological Conservation, vol. 103, no. 3, pp. 331-341, viewed 19 August 2019, DOI:10.1016/S0006-3207(01)00144-6
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Contact Essay is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Essay Writing Service Works
First, you will need to complete an order form. It's not difficult but, in case there is anything you find not to be clear, you may always call us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download