Transport system has a significant contribution towards the progress and development of a country. It is very important for a country to ensure that its transportation system is safe, secure and at the same time is sustainable, and competitive as well. Train is one of the significant innovations of the transport industry. It has allowed the society too grow and develop both notably and on a large scale. The towns and the cities situated far across each other have been connected overnight because of the rapid growth in these areas. However, due to negligence of the rail authorities and safety breaches there are several incidents of train crashes seen in near about every year in different parts of the world. One of such significant rail crashes is the Kerang train disaster that took place on 5th of June in the year 2007 in Australia at about 13:40 (Waterson et al., 2017). Apart from this there are about 100 of accidents that takes place in the level crossings of Australia each year. However this paper is going to elaborate on the incident of Kerang train crash and assess how the safety breaches have contributed to this. Furthermore, it shall present a detailed analysis over the changes in the policy and practices that was resulted from the incident and they were implemented.
The incident and the response
The massive disaster of Kerang train accident accident on the year 2007 in the Australian state of Victoria in Piangil railway line (Salmon, Walker & Stanton, 2015). This type of incident is known to be as level crossing collision. The major reason of the accident was a truck consisted of a refrigerated curtain sided trailer. The train got collided with the truck and resulted in the closure of all the nearby sections of the Murray Valley Highway. About 11 people were killed in this incident and 23 were injured during the crash and this has made this the deadliest rail disaster in Australia since the year 1977 (Mulvihill et al., 2016). The incident have led a catastrophic effects on the lives of the people.
This incident was the result of the Victorian truck drivers’ error. The name of the truck driver was Christian Scholl (Salmon et al., 2014). He was charged over the eleven deaths of the people in the level crossing smash. It was said by the court that this truck driver did not see the crossing lights and due to this the dangerous incident had happened. However he was acquitted over the same in the year 2009.
It is to note that the Kerang level crossing is ranked as 140 in the list of 143 crossings present in Victoria that are assessed for their safety (Salmon et al., 2017). It was because of the negligence of the rail management and government that has led to the safety breach. The should have changed the crossing lights when they came to know that the lights were of no use and they are invisible for the ones who are a bit away from the crossing. However, since the very crash, the level crossing was upgraded with advanced warning lights and with boom gates in order to ensure that such things do not happen again.
As per Ling et al. (2017), on an average, the incidents at the Australian railway level crossings led to the death of about 37 people per year. The various levels of divergent institutional arrangements, risk and the systems of control among the road and the rail networks have increased the various complexities of the developing some coordinated strategies in order to enhance the safety. With the same, the diversities in the jurisdictional governance as well as in the management regimes are required to be considered in the drive for the national compliance and consistency with the Australian Railway Safety Legislation (Hess & Brown, 2018). Since the incident, the Australian government has made several efforts and taken different approach for developing a New National Transport Policy. In response to the provocation of providing the Australian citizen a competitive, continuous and safe transport system, the Territory, State and the Commonwealth ministers is working together by the ATC (Australian Transport Council) in order to coordinate the national road and transport safety policy problems. ATC has accorded for developing and implementing the 6 functional streams in order to progress the country’s National Policy Framework (Graham & Kaye, 2015). It is to note that one of these six streams is led by the Safety SSC with a main motive of progressing “a safe land transport system that meets Australia’s mobility, social and economic objectives with maximum safety for its users”. With the same, it is also to note that the development and growth of the National Railway Level Crossing Safety Strategy of the year 2010-2020 is one of the number of initiatives that is managed by Safety SSC in order to converge the objective. It is been supported by the RLCG (Rail Level Crossing Group), the NRSEG (National Road Safety Executive Group) and the RSPRG (Rail Safety Policy and Regulation Group) (Adeolu, Cornelius & Bamidele, 2016).
In this context, it is also to note that in order to attain the strategic motive of “National Railway Level Crossing Safety Strategy (2010-2020)”, there are several principles that has been adopted and they are-
In order to meet all these principles and to make sure the possibility of the crashes and the near misses at the railway crossings of Australia are been decreased (Larue et al., 2015). With the same the RLCG has recognised a wide array of chances could be regarded because this strategy has been implemented (Golchin, Tosato & Brunelli, 2016). All these opportunities comprise of:
Furthermore, in order to ensure that these policies are been considered effectively, several measures are been taken. National Railway Level Crossing Safety Strategy (2010-2020) are been assessed every 3 consecutive years (Liang et al., 2017). In order to achieve the strategic objective a rolling three years of Action Plan that are drawing on the principles that are outlined in the strategy would be updated, developed each year and are reported against on a daily basis. They communicate about all the relevant performance measures on the basis of the work done as well as the latest data available on the railway level crossing safety data. Furthermore, in order to measure the efficiency of the strategy, a wide range of measure have been recognised. These measures are as follows:
Area of focus |
Measuring the success |
Governance |
§ Identifying the opportunities for the coordination of the activities |
Safe System |
§ Benchmarking against the global best practice § A safe system approach |
Education and enforcement |
§ Increasing the level of compliance § Increasing the level of awareness among the community |
Technology |
§ Extending the investment in the R&D § Adopting new technologies |
Risk Management |
§ The decisions on investment are being driven by the management tool of risk assessment |
Conclusion
The train technology has always been the market leader since a huge number of years. However, with the advancements and developments the level of safety breaches is also increasing side by side. From the above analysis, the disastrous accident of Kerang train in the year 2007 was significant and most noteworthy for most of the people. However, since then, the Australian rail industry has seen extensive changes comprising of the institutional reorganisation, further investment and significant growth. Sustainable improvements in the safety and risk performance have led from most of these changes, together with the contribution and efforts of the railway staffs and managers to consistently improve. Some of the improvements have been derived from the learning that is taken from the operational accidents and experience including the Kerang train accident.
References:
Adeolu, O. D., Cornelius, O. A., & Bamidele, A. B. (2016). Evaluation of Railway Level Crossing Attributes on Accident Causation in Lagos, Nigeria. The Indonesian Journal of Geography, 48(2), 108.
Golchin, P., Tosato, P., & Brunelli, D. (2016, September). Zero-energy wake up for power line communications in smart cities. In Smart Cities Conference (ISC2), 2016 IEEE International (pp. 1-6). IEEE.
Graham, J., & Kaye, D. (2015). A Risk Management Approach to Business Continuity: Aligning Business Continuity and Corporate Governance. Rothstein Publishing.
Hess, D. J., & Brown, K. P. (2018). Water and the politics of sustainability transitions: from regime actor conflicts to system governance organizations. Journal of Environmental Policy & Planning, 20(2), 128-142.
Larue, G. S., Rakotonirainy, A., Haworth, N. L., & Darvell, M. (2015). Assessing driver acceptance of Intelligent Transport Systems in the context of railway level crossings. Transportation Research Part F: Traffic Psychology and Behaviour, 30, 1-13.
Liang, C., Ghazel, M., Cazier, O., & El-Koursi, E. M. (2017). A new insight on the risky behavior of motorists at railway level crossings: An observational field study. Accident Analysis & Prevention, 108, 181-188.
Ling, L., Guan, Q., Dhanasekar, M., & Thambiratnam, D. P. (2017). Dynamic simulation of train–truck collision at level crossings. Vehicle System Dynamics, 55(1), 1-22.
Mulvihill, C. M., Salmon, P. M., Beanland, V., Lenné, M. G., Read, G. J., Walker, G. H., & Stanton, N. A. (2016). Using the decision ladder to understand road user decision making at actively controlled rail level crossings. Applied ergonomics, 56, 1-10.
Salmon, P. M., Read, G. J., Beanland, V., Lenné, M. G., & Stanton, N. A. (2017). Integrating Human Factors Methods and Systems Thinking for Transport Analysis and Design. CRC Press.
Salmon, P. M., Walker, G. H., & Stanton, N. A. (2015). Broken components versus broken systems: why it is systems not people that lose situation awareness. Cognition, Technology & Work, 17(2), 179-183.
Scott-Parker, B., Goode, N., & Salmon, P. (2015). The driver, the road, the rules… and the rest? A systems-based approach to young driver road safety. Accident Analysis & Prevention, 74, 297-305.
Waterson, P., Jenkins, D. P., Salmon, P. M., & Underwood, P. (2017). ‘Remixing Rasmussen’: The evolution of Accimaps within systemic accident analysis. Applied ergonomics, 59, 483-503.
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Contact Essay is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Essay Writing Service Works
First, you will need to complete an order form. It's not difficult but, in case there is anything you find not to be clear, you may always call us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download