Subject 1:
|
WAGES |
KCAPITAL |
Labor |
D1 |
D2 |
WAGES |
1 |
|
|
|
|
KCAPITAL |
0.905554 |
1 |
|
|
|
Labor |
0.564246 |
0.250203 |
1 |
|
|
D1 |
0.025988 |
0.028247 |
-0.02952 |
1 |
|
D2 |
0.028428 |
-0.02534 |
0.073159 |
0.06072 |
1 |
The highlighted correlation is greater then 0.8. Therefore, the variable has to be removed from the dataset and it can be said that the rest of the variables are not dangerously correlated. Regression analysis on the dependent variable and the rest three of the independent variable is given below:
|
|
|
|
|
|
|
|
|
Regression Statistics |
|
|
|
|
|
|
|
|
Multiple R |
0.82712 |
|
|
|
|
|
|
|
R Square |
0.684128 |
|
|
|
|
|
|
|
Adjusted R Square |
0.681428 |
|
|
|
|
|
|
|
Standard Error |
17644.38 |
|
|
|
|
|
|
|
Observations |
473 |
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Significance F |
|
|
|
Regression |
4 |
3.16E+11 |
7.89E+10 |
253.403 |
1.2E-115 |
|
|
|
Residual |
468 |
1.46E+11 |
3.11E+08 |
|
|
|
|
|
Total |
472 |
4.61E+11 |
|
|
|
|
|
|
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 99.0% |
Upper 99.0% |
Intercept |
-518.847 |
1524.07 |
-0.34044 |
0.733682 |
-3513.71 |
2476.02 |
-4460.66 |
3422.97 |
X Variable 1 |
0.74864 |
0.026659 |
28.08157 |
2E-102 |
0.696253 |
0.801027 |
0.679689 |
0.817591 |
X Variable 2 |
147.2564 |
21.67842 |
6.792765 |
3.35E-11 |
104.6573 |
189.8555 |
91.1879 |
203.325 |
X Variable 3 |
842.2054 |
1694.082 |
0.497145 |
0.61932 |
-2486.74 |
4171.155 |
-3539.33 |
5223.738 |
X Variable 4 |
7993.062 |
1896.699 |
4.214195 |
3.01E-05 |
4265.96 |
11720.16 |
3087.485 |
12898.64 |
It can be said from the table that the regression fit is good fit but the co-efficient table shows that variable 3 has a p-value higher then 0.01. Therefore, the variabl that is D1 has to deleted from the data table. Regression test with the same dependent variable and with those same independent variables other than D1 is given below:
Regression Statistics |
|
|
|
|
|
|
|
|
Multiple R |
0.827019333 |
|
|
|
|
|
|
|
R Square |
0.683960977 |
|
|
|
|
|
|
|
Adjusted R Square |
0.681939405 |
|
|
|
|
|
|
|
Standard Error |
17630.21504 |
|
|
|
|
|
|
|
Observations |
473 |
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Significance F |
|
|
|
Regression |
3 |
3.15E+11 |
1.05E+11 |
338.3313 |
7E-117 |
|
|
|
Residual |
469 |
1.46E+11 |
3.11E+08 |
|
|
|
|
|
Total |
472 |
4.61E+11 |
|
|
|
|
|
|
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 99.0% |
Upper 99.0% |
Intercept |
13.95975517 |
1082.726 |
0.012893 |
0.989719 |
-2113.63 |
2141.554 |
-2786.35 |
2814.271 |
X Variable 1 |
0.749167279 |
0.026617 |
28.14623 |
8.4E-103 |
0.696864 |
0.801471 |
0.680326 |
0.818008 |
X Variable 2 |
146.7921723 |
21.64091 |
6.783087 |
3.56E-11 |
104.267 |
189.3173 |
90.82115 |
202.7632 |
X Variable 3 |
8054.211397 |
1891.187 |
4.258812 |
2.48E-05 |
4337.963 |
11770.46 |
3162.934 |
12945.49 |
It can be said from the table that the regression fit is quite good here and the p-values of the co-efficient falls under 0.01. The regression analysis can be interpreted as the ultimate model here with all the variables falling in line. Therefore, the required regression equation is :
Y= (0.75)*KCAPITAL + (146.79)*Labor + (8054.21)*D2.
Y= (5)*KCAPITAL – (90)*Labor + (8054.21)*D2.
Subject 2:
2.1 The process starts with description of co linearity among independent variables. The independent variables and correlation between them can be depicted here:
|
WAGES |
KCAPITAL |
Labor |
D1 |
D2 |
WAGES |
1 |
|
|
|
|
KCAPITAL |
0.844151 |
1 |
|
|
|
Labor |
0.960251 |
0.751036 |
1 |
|
|
D1 |
0.027968 |
-0.03644 |
0.004177 |
1 |
|
D2 |
0.12812 |
-0.07081 |
0.155761 |
0.06072 |
1 |
The highlighted correlation is greater then 0.8. Therefore, the variable has to be removed from the dataset and it can be said that the rest of the variables are not dangerously correlated. Regression analysis on the dependent variable and the rest three of the independent variable is given below:
|
|
|
|
|
|
|
|
|
|
Regression Statistics |
|
|
|
|
|
|
|
||
Multiple R |
0.971118892 |
|
|
|
|
|
|
|
|
R Square |
0.943071903 |
|
|
|
|
|
|
|
|
Adjusted R Square |
0.942585338 |
|
|
|
|
|
|
|
|
Standard Error |
0.131050435 |
|
|
|
|
|
|
|
|
Observations |
473 |
|
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Significance F |
|
|
|
|
Regression |
4 |
133.1499 |
33.28748 |
1938.224 |
1.2E-289 |
|
|
|
|
Residual |
468 |
8.037533 |
0.017174 |
|
|
|
|
|
|
Total |
472 |
141.1875 |
|
|
|
|
|
|
|
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 96.0% |
Upper 96.0% |
|
Intercept |
0.728946993 |
0.045026 |
16.18956 |
3.92E-47 |
0.640469 |
0.817425 |
0.636217 |
0.821677 |
|
X Variable 1 |
0.745283949 |
0.017807 |
41.85416 |
2.6E-160 |
0.710293 |
0.780275 |
0.708611 |
0.781957 |
|
X Variable 2 |
0.302633323 |
0.020118 |
15.04322 |
5.29E-42 |
0.263101 |
0.342165 |
0.261201 |
0.344065 |
|
X Variable 3 |
0.000311127 |
0.012578 |
0.024736 |
0.980276 |
-0.0244 |
0.025027 |
-0.02559 |
0.026215 |
|
X Variable 4 |
0.291151384 |
0.014821 |
19.64427 |
4.23E-63 |
0.262027 |
0.320276 |
0.260627 |
0.321675 |
It can be said from the table that the regression fit is good fit but the co-efficient table shows that variable 3 has a p-value higher then 0.01. Therefore, the variabl that is D1 has to deleted from the data table. Regression test with the same dependent variable and with those same independent variables other than D1 is given below:
Regression Statistics |
|
|
|
|
|
|
|
|
Multiple R |
0.971119 |
|
|
|
|
|
|
|
R Square |
0.943072 |
|
|
|
|
|
|
|
Adjusted R Square |
0.942708 |
|
|
|
|
|
|
|
Standard Error |
0.130911 |
|
|
|
|
|
|
|
Observations |
473 |
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Significance F |
|
|
|
Regression |
3 |
133.1499 |
44.3833 |
2589.817 |
2.2E-291 |
|
|
|
Residual |
469 |
8.037544 |
0.017138 |
|
|
|
|
|
Total |
472 |
141.1875 |
|
|
|
|
|
|
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 96.0% |
Upper 96.0% |
Intercept |
0.729187 |
0.043918 |
16.60335 |
4.95E-49 |
0.642887 |
0.815488 |
0.638739 |
0.819636 |
X Variable 1 |
0.745264 |
0.01777 |
41.93906 |
8.4E-161 |
0.710345 |
0.780183 |
0.708667 |
0.781862 |
X Variable 2 |
0.302649 |
0.020087 |
15.06726 |
4E-42 |
0.263178 |
0.342119 |
0.261281 |
0.344016 |
X Variable 3 |
0.291168 |
0.01479 |
19.68681 |
2.48E-63 |
0.262105 |
0.320231 |
0.260708 |
0.321628 |
It can be said from the table that the regression fit is quite good here and the p-values of the co-efficient falls under 0.01. The regression analysis can be interpreted as the ultimate model here with all the variables falling in line. Therefore, required regression equation is :
Y = 0.73 + 0.74*KCAPITAL + 0.30*Labor + 0.29*D2.
2.2. Co-efficient of KCAPITAL is the average increase in the dependent variable with the per unit increase in KCAPITA with Labor keft fixed. Co-efficient of Labor is the average increase in the dependent variable with the per unit increase in Labor keeping KCAPITAL fixed. D1 is categorical variable. Therefore, coefficient of D1 is the average change in y with every category of D1. The coefficient of KCAPITAl can be challenged here since it can be said that capital has a much larger effect in business. Again, the sign can be challenged here regarding Labor since a small number of Labor can have a negative impact. The coefficient can also be increased regarding Labor. The model can be challenged in the lights of these arguments and a new model can be proposed like:
Y= (5)*KCAPITAL – (90)*Labor + (0.29)*D1.
Subject 3.
It can be checked from the residual plot and the normality plot that the necessary assumptions of residual homoscadasticity and independence are not being met here regarding the log linear model but normality condition is being met. The normality and homoscadasticity is not being met in the linear model but the residuals are independent here.. The residual plot and normality plot is attached below:
Residual plot for the log linear model.
Normality plot for log linear model.
Residual plot for linear model.
Normality plot for linear model.
De Oliveira, A.B., Fischmeister, S., Diwan, A., Hauswirth, M. and Sweeney, P.F., 2017, March. Perphecy: Performance Regression Test Selection Made Simple but Effective. In Software Testing, Verification and Validation (ICST), 2017 IEEE International Conference on (pp. 103-113). IEEE.
Saha, R.K., Zhang, L., Khurshid, S. and Perry, D.E., 2015, May. An information retrieval approach for regression test prioritization based on program changes. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on (Vol. 1, pp. 268-279). IEEE.
Subject 1:
|
WAGES |
KCAPITAL |
Labor |
D1 |
D2 |
WAGES |
1 |
|
|
|
|
KCAPITAL |
0.905554 |
1 |
|
|
|
Labor |
0.564246 |
0.250203 |
1 |
|
|
D1 |
0.025988 |
0.028247 |
-0.02952 |
1 |
|
D2 |
0.028428 |
-0.02534 |
0.073159 |
0.06072 |
1 |
The highlighted correlation is greater then 0.8. Therefore, the variable has to be removed from the dataset and it can be said that the rest of the variables are not dangerously correlated. Regression analysis on the dependent variable and the rest three of the independent variable is given below:
|
|
|
|
|
|
|
|
|
Regression Statistics |
|
|
|
|
|
|
|
|
Multiple R |
0.82712 |
|
|
|
|
|
|
|
R Square |
0.684128 |
|
|
|
|
|
|
|
Adjusted R Square |
0.681428 |
|
|
|
|
|
|
|
Standard Error |
17644.38 |
|
|
|
|
|
|
|
Observations |
473 |
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Significance F |
|
|
|
Regression |
4 |
3.16E+11 |
7.89E+10 |
253.403 |
1.2E-115 |
|
|
|
Residual |
468 |
1.46E+11 |
3.11E+08 |
|
|
|
|
|
Total |
472 |
4.61E+11 |
|
|
|
|
|
|
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 99.0% |
Upper 99.0% |
Intercept |
-518.847 |
1524.07 |
-0.34044 |
0.733682 |
-3513.71 |
2476.02 |
-4460.66 |
3422.97 |
X Variable 1 |
0.74864 |
0.026659 |
28.08157 |
2E-102 |
0.696253 |
0.801027 |
0.679689 |
0.817591 |
X Variable 2 |
147.2564 |
21.67842 |
6.792765 |
3.35E-11 |
104.6573 |
189.8555 |
91.1879 |
203.325 |
X Variable 3 |
842.2054 |
1694.082 |
0.497145 |
0.61932 |
-2486.74 |
4171.155 |
-3539.33 |
5223.738 |
X Variable 4 |
7993.062 |
1896.699 |
4.214195 |
3.01E-05 |
4265.96 |
11720.16 |
3087.485 |
12898.64 |
It can be said from the table that the regression fit is good fit but the co-efficient table shows that variable 3 has a p-value higher then 0.01. Therefore, the variabl that is D1 has to deleted from the data table. Regression test with the same dependent variable and with those same independent variables other than D1 is given below:
Regression Statistics |
|
|
|
|
|
|
|
|
Multiple R |
0.827019333 |
|
|
|
|
|
|
|
R Square |
0.683960977 |
|
|
|
|
|
|
|
Adjusted R Square |
0.681939405 |
|
|
|
|
|
|
|
Standard Error |
17630.21504 |
|
|
|
|
|
|
|
Observations |
473 |
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Significance F |
|
|
|
Regression |
3 |
3.15E+11 |
1.05E+11 |
338.3313 |
7E-117 |
|
|
|
Residual |
469 |
1.46E+11 |
3.11E+08 |
|
|
|
|
|
Total |
472 |
4.61E+11 |
|
|
|
|
|
|
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 99.0% |
Upper 99.0% |
Intercept |
13.95975517 |
1082.726 |
0.012893 |
0.989719 |
-2113.63 |
2141.554 |
-2786.35 |
2814.271 |
X Variable 1 |
0.749167279 |
0.026617 |
28.14623 |
8.4E-103 |
0.696864 |
0.801471 |
0.680326 |
0.818008 |
X Variable 2 |
146.7921723 |
21.64091 |
6.783087 |
3.56E-11 |
104.267 |
189.3173 |
90.82115 |
202.7632 |
X Variable 3 |
8054.211397 |
1891.187 |
4.258812 |
2.48E-05 |
4337.963 |
11770.46 |
3162.934 |
12945.49 |
It can be said from the table that the regression fit is quite good here and the p-values of the co-efficient falls under 0.01. The regression analysis can be interpreted as the ultimate model here with all the variables falling in line. Therefore, the required regression equation is :
Y= (0.75)*KCAPITAL + (146.79)*Labor + (8054.21)*D2.
Y= (5)*KCAPITAL – (90)*Labor + (8054.21)*D2.
Subject 2:
2.1 The process starts with description of co linearity among independent variables. The independent variables and correlation between them can be depicted here:
|
WAGES |
KCAPITAL |
Labor |
D1 |
D2 |
WAGES |
1 |
|
|
|
|
KCAPITAL |
0.844151 |
1 |
|
|
|
Labor |
0.960251 |
0.751036 |
1 |
|
|
D1 |
0.027968 |
-0.03644 |
0.004177 |
1 |
|
D2 |
0.12812 |
-0.07081 |
0.155761 |
0.06072 |
1 |
The highlighted correlation is greater then 0.8. Therefore, the variable has to be removed from the dataset and it can be said that the rest of the variables are not dangerously correlated. Regression analysis on the dependent variable and the rest three of the independent variable is given below:
|
|
|
|
|
|
|
|
|
|
Regression Statistics |
|
|
|
|
|
|
|
||
Multiple R |
0.971118892 |
|
|
|
|
|
|
|
|
R Square |
0.943071903 |
|
|
|
|
|
|
|
|
Adjusted R Square |
0.942585338 |
|
|
|
|
|
|
|
|
Standard Error |
0.131050435 |
|
|
|
|
|
|
|
|
Observations |
473 |
|
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Significance F |
|
|
|
|
Regression |
4 |
133.1499 |
33.28748 |
1938.224 |
1.2E-289 |
|
|
|
|
Residual |
468 |
8.037533 |
0.017174 |
|
|
|
|
|
|
Total |
472 |
141.1875 |
|
|
|
|
|
|
|
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 96.0% |
Upper 96.0% |
|
Intercept |
0.728946993 |
0.045026 |
16.18956 |
3.92E-47 |
0.640469 |
0.817425 |
0.636217 |
0.821677 |
|
X Variable 1 |
0.745283949 |
0.017807 |
41.85416 |
2.6E-160 |
0.710293 |
0.780275 |
0.708611 |
0.781957 |
|
X Variable 2 |
0.302633323 |
0.020118 |
15.04322 |
5.29E-42 |
0.263101 |
0.342165 |
0.261201 |
0.344065 |
|
X Variable 3 |
0.000311127 |
0.012578 |
0.024736 |
0.980276 |
-0.0244 |
0.025027 |
-0.02559 |
0.026215 |
|
X Variable 4 |
0.291151384 |
0.014821 |
19.64427 |
4.23E-63 |
0.262027 |
0.320276 |
0.260627 |
0.321675 |
It can be said from the table that the regression fit is good fit but the co-efficient table shows that variable 3 has a p-value higher then 0.01. Therefore, the variabl that is D1 has to deleted from the data table. Regression test with the same dependent variable and with those same independent variables other than D1 is given below:
Regression Statistics |
|
|
|
|
|
|
|
|
Multiple R |
0.971119 |
|
|
|
|
|
|
|
R Square |
0.943072 |
|
|
|
|
|
|
|
Adjusted R Square |
0.942708 |
|
|
|
|
|
|
|
Standard Error |
0.130911 |
|
|
|
|
|
|
|
Observations |
473 |
|
|
|
|
|
|
|
ANOVA |
|
|
|
|
|
|
|
|
|
df |
SS |
MS |
F |
Significance F |
|
|
|
Regression |
3 |
133.1499 |
44.3833 |
2589.817 |
2.2E-291 |
|
|
|
Residual |
469 |
8.037544 |
0.017138 |
|
|
|
|
|
Total |
472 |
141.1875 |
|
|
|
|
|
|
|
Coefficients |
Standard Error |
t Stat |
P-value |
Lower 95% |
Upper 95% |
Lower 96.0% |
Upper 96.0% |
Intercept |
0.729187 |
0.043918 |
16.60335 |
4.95E-49 |
0.642887 |
0.815488 |
0.638739 |
0.819636 |
X Variable 1 |
0.745264 |
0.01777 |
41.93906 |
8.4E-161 |
0.710345 |
0.780183 |
0.708667 |
0.781862 |
X Variable 2 |
0.302649 |
0.020087 |
15.06726 |
4E-42 |
0.263178 |
0.342119 |
0.261281 |
0.344016 |
X Variable 3 |
0.291168 |
0.01479 |
19.68681 |
2.48E-63 |
0.262105 |
0.320231 |
0.260708 |
0.321628 |
It can be said from the table that the regression fit is quite good here and the p-values of the co-efficient falls under 0.01. The regression analysis can be interpreted as the ultimate model here with all the variables falling in line. Therefore, required regression equation is :
Y = 0.73 + 0.74*KCAPITAL + 0.30*Labor + 0.29*D2.
2.2. Co-efficient of KCAPITAL is the average increase in the dependent variable with the per unit increase in KCAPITA with Labor keft fixed. Co-efficient of Labor is the average increase in the dependent variable with the per unit increase in Labor keeping KCAPITAL fixed. D1 is categorical variable. Therefore, coefficient of D1 is the average change in y with every category of D1. The coefficient of KCAPITAl can be challenged here since it can be said that capital has a much larger effect in business. Again, the sign can be challenged here regarding Labor since a small number of Labor can have a negative impact. The coefficient can also be increased regarding Labor. The model can be challenged in the lights of these arguments and a new model can be proposed like:
Y= (5)*KCAPITAL – (90)*Labor + (0.29)*D1.
Subject 3.
It can be checked from the residual plot and the normality plot that the necessary assumptions of residual homoscadasticity and independence are not being met here regarding the log linear model but normality condition is being met. The normality and homoscadasticity is not being met in the linear model but the residuals are independent here.. The residual plot and normality plot is attached below:
Residual plot for the log linear model.
Normality plot for log linear model.
Residual plot for linear model.
Normality plot for linear model.
De Oliveira, A.B., Fischmeister, S., Diwan, A., Hauswirth, M. and Sweeney, P.F., 2017, March. Perphecy: Performance Regression Test Selection Made Simple but Effective. In Software Testing, Verification and Validation (ICST), 2017 IEEE International Conference on (pp. 103-113). IEEE.
Saha, R.K., Zhang, L., Khurshid, S. and Perry, D.E., 2015, May. An information retrieval approach for regression test prioritization based on program changes. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on (Vol. 1, pp. 268-279). IEEE.
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Contact Essay is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Essay Writing Service Works
First, you will need to complete an order form. It's not difficult but, in case there is anything you find not to be clear, you may always call us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download