Remember to prepare your answers in LaTeX. Refer to hw-template.tex for help in preparing your HW file. Also, please create an individual page for each solution. Use the command pagebreak to force page breaks.
|N(S)| ≥ |S| − d.
Prove that G contains a matching of size |A| − d. [hint: convert G into a graph that satisfies Hall’s condition.]
Solution.
Let V (G) = A ∪ B be a bipartition of G, with |A| ≥ |B|. Add d new vertices to B, each connected to all vertices in A. Then let G0 be the new graph. Then G0 has |NG0(S)| ≥ |S| for every S ⊂ A (S has at least |S| − d neighbors from G, and is connected to the d new vertices). By Hall’s Theorem, G0 has a matching for A, which has |A| ≥ (|A| + |B|)/2 = |V (G)|/2 edges. At most d of these edges contain a new vertex of G0, which leaves at least |V (G)|/2 − d edges from G. Hence G contains a matching of size |A| − d hence proven.
Solution.
Hall’s theorem, that is, |N(S)| ≥ |S| ∀S ⊂ X.
By letting G be a bipartite graph with vertex classes X and Y. We add two new vertices a and b to G, and join a to all elements of X, and b to all elements of Y. Let G0 be the graph obtained in this way.
Let C be a set of vertices separating a from b in G0. Then N(X C) ⊆ Y ∩ C. Since |C| = |C ∩ X| + |C ∩ Y |, we have that |C| ≥ |C ∩ X| + |N(X C)|. By the condition in Hall’s theorem, we have that |N(X C)| ≥ |X C|, so |C| ≥ |C ∩ X| + |X C| = |X|.
Thus, by Menger’s theorem, there are |X| independent paths between a and b, this paths induce a matching in G.
For every vertex subset S ⊆ A we have |N(S)| ≥ k|S|. (1)
Show that G contains a collection of stars on k + 1 vertices that saturate A. A star on k + 1 is a graph with k vertices of degree 1 all joined to a vertex of degree k.
Let G be a bipartite graph with bipartition (V1, V2) and let M be a maximum matching of G (Hall’s condition). Then by denoting U the set of M which is unsaturated vertices in V1, and denoting Z the set of all vertices connected by M-alternating paths to vertices of U.
Set S=Z?V1 and T=Z?V2, then as in the half theorem, we have that every vertex in T is M- saturated and ?(s) =T thus G contains a collection of stars on k + 1 vertices that saturate and a star on k + 1 is a graph with k vertices of degree 1 all joined to a vertex of degree k.
If G is an n-vertex graph with maximum degree ? (G) and no vertex of degree 0, then then the upper bound is immediate and clearly sharp. In order to verify the lower bound, we employ induction on the size m of a connected graph: if m ≤ 2 then the lower bound follows.
By assuming that the lower bound holds for all connected graphs of positive sizes not exceeding k, where k≥2 and letting G be a connected graph of order n having a size k+1.
If G has a cycle edge e, then;
β1(G) ≥ β1(G-e) ≥ , otherwise G is a tree.
If G=K1, n-1, then G contains
If G≠K1, n-1, then G contains an edge e such that (G-e) has two nontrivial components G1and G2.
By letting ni denote the order of Gi, i=1, 2 and apply the induction hypothesis to G1 and G2 we have;
β1(G) ≥ β1(G1) ≥ β1(G2) ≥ +
This implies that β1(G) ≥ β1(G1) ≥ β1(G2) = .
Solution
Hall Theorem: A bipartite graph G with partition (A, B) has a matching of;
A ⇔∀S ⊆ A, ?N(S) ? ≥ ?S?
Tutte’s Theorem: A graph G has a 1-factor o(H T) ≤ |T| ∀T ⊂ V (H).
If G has a matching of size |X| and H has a 1-factor (H is graph obtained from G by adding one vertex to Y if V (G) is odd and then adding the edges of a clique (=a full graph) on the vertices of Y ) it follows that G satisfies Hall’s condition.
Assuming that H has a 1-factor (i.e. a perfect matching) and let M be the edges in this matching that are incident with vertices in X. In the construction of the graph H the edges incident with X did not change so the same set of edges is a matching of size |M| = |X| also in the original graph G. Conversely if there is a matching M of size |X| in G then this matching has to touch every vertex in X. Thus the edges of M are still edges in H, matching every vertex in X to some vertex in Y. There might be some vertices in Y that are not matched by M, but the construction of H made sure that the graph induced by these vertices is a clique on an even number of vertices, enabling us to complete the matching.
Also, assuming that G satisfies Hall’s condition for subsets S ⊂ X and let T ⊂ V (H). If Y ⊂ T then there are at most |X| vertices left – each a connected component. But by our assumption it is clear that |Y | ≥ |X| so that we are okay. Assume therefore that Y 6⊂ T, since Y forms a clique in H there is one connected component B of H T containing all the vertices Y T. Let S = X V (B). By construction N(S) ⊂ T so that by assumption |S| ≤ |T|.
The connected components of H T are exactly B and the separate vertices of S. If |V (B)| is even we are therefore done. If not write the vertices of H as a disjoint union V (H) = S tT tV (B), since the total number of vertices is even either |S| or |T| is even and the other is odd. In particular we have and we are done again.
Now by assuming the condition of Hall’s marriage theorem, namely that |N(S)| ≥ |S| for every S that is contained either in X or in Y. By the above two paragraphs we have a matching of size |X| and another matching of size |Y | in the bipartite G. This means that |X| = |Y | and hence both of these matchings are perfect hence proof.
References
D´?az, G., & Grammatikopoulos, A., & Kaporis, L., & Kirousis, X., & Perez, D., & Sotiropoulos (2008). 5-regular graphs are 3-colorable with positive probability. In Algorithms – ESA 2008 (Brodal and Leonardi, eds.), pp. 215–225. LNCS 3669, Springer.
Janson, T., & Luczak, B., & Rucin´ski, A (2011). Random Graphs: Wiley, New York.
Krza¸ka La., & Pagnani B., & Weight. M (2010). Threshold values, stability analysis and high-q asymptotic for the coloring problem on random graphs, Phys. Rev. E 70, 04678.
M´ezard M., & Zecchina, R (2008). Random K-Satisfiability: From an Analytic Solution to a new efficient algorithm, Phys. Rev. E 66, 056126.
Essay Writing Service Features
Our Experience
No matter how complex your assignment is, we can find the right professional for your specific task. Contact Essay is an essay writing company that hires only the smartest minds to help you with your projects. Our expertise allows us to provide students with high-quality academic writing, editing & proofreading services.Free Features
Free revision policy
$10Free bibliography & reference
$8Free title page
$8Free formatting
$8How Our Essay Writing Service Works
First, you will need to complete an order form. It's not difficult but, in case there is anything you find not to be clear, you may always call us so that we can guide you through it. On the order form, you will need to include some basic information concerning your order: subject, topic, number of pages, etc. We also encourage our clients to upload any relevant information or sources that will help.
Complete the order formOnce we have all the information and instructions that we need, we select the most suitable writer for your assignment. While everything seems to be clear, the writer, who has complete knowledge of the subject, may need clarification from you. It is at that point that you would receive a call or email from us.
Writer’s assignmentAs soon as the writer has finished, it will be delivered both to the website and to your email address so that you will not miss it. If your deadline is close at hand, we will place a call to you to make sure that you receive the paper on time.
Completing the order and download